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5 —E Basic Group Knowledge

1.1 Group

E M 1.1 (Equivalence Relation) If X is a set, ~ is equivalence relation. For Va, b, c € X.
e an~a
ea~b —b~a
ea~b&b~c —a~c
E X 1.2 (equivalence class) [a] = {x € X,x ~ a}
FE X 1.3 (Group) A group is a quartet, (G,m,Le)
o Gisaset
o m: G X G — G is a map, called group multiplication map.
o I: G — G is a map, called inverse map.
o e € G is a distinguished element of G called identity element.
They have three significant property:
o associative: Vg1 g2 g3 € G m(m(g1, 82),83) = m(g1,m(g2,83))
o Vg eG, m(g,e) =m(e,g)=¢g
o VgeG m(I(g),g) =m(g,1(g)) =e

7E X 1.4 (abelian group) A group G is called abelian group if
Vg1 22€G, g182 = 8281 (1.1)

E X 1.5 (Subgroup) (G,m,Le) is a group, if H € G . m,I perserve H, which means m : H X H —
H,I:H — H (e € H). Then we say that (H,m,L,e) is a subgroup of (G,m,l,e).

H<G (1.2)
7E X 1.6 (Group representation) A representation of Group G is a D which maps elements
of G onto a set of satisfying

o D(e)= 1 where I is the identity operator on the where the linear operators act.
o D(g1)D(g2) = D(g182)
The dimension of linear operator acts is called the of representation. (The dimension of

linear operator equals to the dimension of the space of it acts.)

7E X 1.7 (General Linear Group) M, (k) means a set of n X n matrixs with entries belongs to K = R
or k = C. However it is unital monoid, But it might not be a group cause some matrix don’t have

inverse matrix. So we can define a group called General Linear Group

GL(n, k) = {A|A = n X n invertible matrix over k} ¢ M, (k) (1.3)



1.2 Group actions on Sets

There are many important groups:

SL(n,k) == {A € GL(n, k) : detA =1} (1.4)
O(n, k) == {A € GL(n,k) : AA" =1} (1.5)
SO(n, k) == {A € O(n,k) : detA =1} (1.6)
U(n) =={A € GL(n,C) : AA" =1} (1.7)
SU(n) :=={A € U(n) : detA =1} (1.8)

denote: Modular Group is called SL(2, Z)
7E X 1.8 (Center of a group) Z(G) is a center of a group, which all elements in this group commute
with it.

Z(G) ={z€Glzg =gz Vg € G} (1.9)

1.2 Group actions on Sets

7E X 1.9 (group action by group) X is a set, G is a group,if X is a Group action by a Group G. We
say that X is a G-set.
now, explain what does action actually means.
Left G-action on set X is amap ¢ : G X X — X, which is compatible with group multiplication laws.
o w(g1,9(g2,x)) = ¢(g182,x) (compatible with group multiplication laws)
o Vx e X ¢(lg,x) =x (we want 1 ox — x to be identity map)
I just wanna to say these two constrains are not the same, we cannot derive the second one from the
first one.

From the first one, we know.
e(1g,¢(16,x) = ¢(1g,x) (1.10)

Does Not mean:
Vxe X o(lg,x) =x (1.11)
7E X 1.10 (Orbits) If group G acts on set X. We can define a equivalence relation on X. We say that.
x,xo€ X if 3g€G o(g,x1) =x3 then x| ~ x; (1.12)
The equivalence class [x] is called orbit of G through a point x.
Oc(x)={y:3g€G st. y=¢(g,x)} (1.13)
The set of orbits is denoted by X/G.

proof why this definition of equivalence relation is valid.

First condition of equivalence relation would be x ~ x.



1.2 Group actions on Sets

It is easy to know that:

o(lg,x) =x

Second condition of equivalence relation would be x; ~ x; — x, ~ x| we suppose that:

@(g1,x1) =x2

Then, we consider this term:
¢(82,x2) = (g2, p(81,x1)) = (8182, x1)

We only need g, = gl‘l, then x» ~ xq

Third conditionis i fx; ~ xp & xp ~ x3 then x; ~ x3
We suppose that:
(g1, x1) =x2  @(g2,x2) = x3

It is obvious that:

0(g182,Xx1) = X3

The above relation shows that x; ~ x3

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

Now we consider Group Actions On Sets Induce Group Actions On Associated Function

Spaces.
Consider there are two sets X and Y. ¥ [X — Y] is a set of functions from X — Y

Now there is a Left G-action defined by ¢

p:GXX—>X
G action on set ¥ [X — Y] can be induced by:

o: GXF > F
which satisfies:

$(g, F)(x) = Fp(g™",x))

Now I need to explain why this is true. (Why this kind of map is Group acting on set )

Consider
@(g.F) o (x) = F(p(g™".x))

Then consider:

@(g1, (g2, F)) o (x)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)



1.3 Symmetric Group

This would equal to:
#(g2, F) o (p(g; ", x)

F(e(gy', o(g".x)))
F(e(gy'gr" x)) (1.24)
F(e((g1g2)7" %))

= ¢(g182, F) o (x)

This means:
P(g182, F) = ¢(g1, $(g2, F)) (1.25)

1.3 Symmetric Group

Any finite group is isomorphic to a subgroup of a permutation group

Su for some N.
Proof
suppose there is a finite group G. {g, g2, - - }. define amap called L(h) h € G.
L(h) :g— hggeGL(h)eSg (1.26)
Why L(h) € Sg.
After impose L(h) to the group G. we obtain:

{hg1. hga,- -~} (1.27)
We say that L(h) is a 1-1, onto map.(a permutation)
1-1: if
hg; = hg; (1.28)

apply h~! to the left, then: g; = g;
onto: We wanna to say that for any g;, we can alwways find a g, to let hg, = g;. This is true cause
g =hlg.
So a 1-1, onto map from G to G is called permutation.
Also it is easy to say that element in the set {L(h)|h € G} conservers group multiplication of the
group Sg.

L(hy) o L(hy) = L(hihy) (1.29)

So {L(h)|h € G} a subgroup of group Sg, Also, the map i +— L(h) is a 1-1, onto map.
L(hy) = L(hy) only when h; = hy (1.30)

So we say that G is isomorphic to a subgroup of Sg
Cyclic permutation and cylcle decomposition

cyclic permutation: let G is a set with order has n elements. Suppose that a; - --a; are [ distinct



1.4 Generators and Relations

number between 1 and n. here is the operation (called cyclic permutation):
8a; = 8ay = 8az " 8a; 7 8a (1.31)
We call this: (obviously, there are / different ways to write this)
¢: (ar,az---ap) (1.32)

Cycle decomposition means: Any permutation o~ € S, can be uniquely written as a product of disjoint

cycles. For example, there is a cycle decomposition in S1;
o =(12)(34)(10,11)(56789) (1.33)

Any cycle can be written as a product of transportation

Consider a permutation ¢

1 2 .- k
(1.34)
ai an oo ak
Now consider a relation:
po(1,2,---k)og™ = (ar,ar---ay) (1.35)

The relation above can be proved like this, Consider the left hand side of equation:

1 2 - k\(1 2 -+ k\(a; ay -+ ax
a, a» - ag)\2 3 -~ 1J\1 2 - &k

(1.36)
2 ok 1\[1 2 - K\[ay a - ay
= = (ai,as---ag)
a - ar aJ\2 3 -~ 1)J\1 2 . &k
However, we can alwawys write (1,2, - k) as:
(LK1, k=1)---(1,2) = (1,2,--- k) (1.37)
This equation can be proved by Mathematical induction...
In this case
wo(1,2,---k)opl=po(l,k)op logo(l,k=1)opl---po(l,2) 0! (1.38)
However:
po(l,k)og™" = (a1, a) (1.39)
In this case:
(ar,ar)(ai,ar-1)---(ai,a2) = (ay,az---ag) (1.40)

This is the reason why we say that Any cycle can be written as a product of transportation. (I think

transportation means exchange over two elements)

We should notice that every element in permutation group can be represented by a product of

transportation. We say that transportation is the generator of the permutation group.



1.4 Generators and Relations

1.4 Generators and Relations

FE X 1.11 (Generating set of a group) A subset S C G is a generating set of a Group, if every

element g € G can be written as a product of elements of S.
8 =SiSi, " Si, (1.41)
For finitely generated group (elements in generating group is finite). We write: (I think the left

side represents the generators)
G =g gilRi-Ry) (1.42)

In this relation, R; means term represented by elements in S which will be set to 1.

However it is convenient to exclude 1 from the Generating Set S, There are two reasons. we can
write s° = 1. And we can write 5", for n < 0, this means: s~
A generating set that contains s~! for every generator s is said to be symmetric. For this kind of set,
we can construct 1 by: ss~! = 15

Most General group with one generator and one relation:
(ala" = 1) (1.43)
FE X 1.12 (Free group) If there is no relation on generating set S. We can define free group on set S,
called F(S). Which is generated by generating group S.
7E X 1.13 (Coxter Group) Coxter group can be represented as: (let m be an n X n symmetric matrix)
(s1- - snlVE, j(s057)™7 = 1) (1.44)
when m;; = +oo it means there is no relation!

We have a restriction:
mi; = 1 (1.45)

Which means:
sis; =1 (1.46)

This kind of element (group element that squares to 1) is called involution.

Then we consider another situation (m;; = 2), In this situation: (we used m;; = 1)

sis;sis; =1 (147)
$iSj=S;8;
I think I should study detail into classification of coxter group.
Reflection Group
Actually, we will talk about The Reflection group Generated by Reflections in the plane orthogonal to

vector v;. (v; € RM).



1.5 Cosets

We consider n vectors in the space RN (I think it needs to satisfies N > n) There relation would be:

Vi v = —2cos(—) (1.48)
m, j
The reflection is a Map:
P, i visv—2—y (1.49)
ViV

For this , We can let these reflections be generators, and we construct a Reflection group:

(Py,|(Py, Py, = 1) (1.50)
Okay, I wanna to say that what does P,, P, means. For simplicity, Consider 3-dimension situation:
Vi = V2P (1.51)
Toa U A
v =—=V2cos( )1+\/§sm( )J (1.52)
m,',j ml-,j
v =vil+v, ]+ vk (1.53)

It can be calculated that, After the double reflection, the vector would be: (Without the change of z
direction)

cos(2;2)  sin(2;%) (v) (15

—sin(2-"=) cos(2;:7=) [ \vy
i,j L]

This states that P,, P, will make a clock-wise rotation in the plane determined by v; and v;. With the

angle 2 times of the angle between v; and v ;.

In this consideration, it is not hard to understand the relation:
(Py,Py)" =1 (155)

With m;; = 1 and need m to be a symmetric matrix.

1.5 Cosets

E X 1.14 (Left Coset (f5£2) of H) H is a sub group of G. Then the left coset of H is defined as: (it
is not a Group! but a set)
gH ={ghlhe H} c G (1.56)

There are three important properties of Left Coset of H.
1. Left Cosets are identical or disjoint.
2. Every elements g € G lies in some Left Coset.

3. We can define an equivalence principle g| ~ g, if 3h € H s.t. g1 = g2h

Rearrangemet lemma (ZEHEEIE) To begin with, I need to review rearrangement lemma. Rear-
rangement lemma states that:
ForagroupH; hH =H (1.57)



1.5 Cosets

It is obvious that 1.4 H is close in group multiplication 2. it has inverse element 3. It has Identity
element. So it is a Group. But we wanna to state that this group is exactly H. This is because (A) we

can find all the element of H in group 2H. This is obvious because:

hhy = hy,

(1.58)
hy=h""hy = VYhy € H 3h, s.t.hh, = hy € hH,
And also (B) we can find all the element of hH in H.
O
Then we back to the three properties of the Left Coset of H.
1. Left Cosets are identical or disjoint(F55£EHE) We prove: Not disjoint means identical.
Not disjoint = Identical (1.59)
if g1 H and g, H are not disjoint. Then, this means:
dgeg HNngH (1.60)
Then we would say:
§=sih (1.61)
g =8
Which leads to:
g1 = g2hahy' = gahs (1.62)

What we do means if two Left Coset deduced by g; and g, are not disjoint, then 3 / s.7.g; = g>h
Then we rearrangement lemma, the Left Coset deduced by g; and g; are the same!
OJ

2. Every elements g € G lies in some Left Coset. This property is easy to prove. because H

contains identity element. g always lies in Left Coset gH

3. Can define an equivalence principle g ~ g, if 37 € H s.t. g1 = goh  Obviously, 1. g; ~ g;

2861~82 8 ~813.if81~8 & ~8 8 ~ &
Also, this equivalence means somethingeles. From 1st property:

Not disjoint = g; ~ g» = Identical (1.63)

We would say that if g; ~ g», Then the left coset defined by them are the same, otherwise, they are

disjoint.

Lagrange Theorem (3[#&EA HE¥E) From 2st: every g lies in some Coset, From 1st: Coset are
identical or disjoint, We can actually define a set of Cosets of Subgroup denoted by G/H. This de-



1.6 Conjugate

compose G into cosets.

G/H={g1H, gH,---} gHNgH=0 st. G=1I"gH (1.64)

Lagrange Theorem: if group H is a subgroup of a group G, Then the order of H divides the order
of G.

1.6 Conjugate

7E X 1.15 (Conjugate) Suppose G is a group, we say that group element h is conjugate to h’ if:
g€ G s.t. h' =ghg™! (1.65)
0

Conjugate Class (3£%E3%) Using this definition, we can define Conjugate Class of h or should I

say equivalence class:
C(h) = {ghg™" | g € G} (1.66)

Element in conjugate class divides order of G . For element g, define F = {f|fg =gf f € G}.
F has group structure. fi € F; b e F = fif, e F;ec F; fie F — fl‘1 € F. Fis a subgroup of G.
G can be expanded with cosets of subgroup F.

G=FUg FUgF--- (1.67)

Each coset leads to same conjugate element: g;f g (g f)' =g f g f'(g)™"' = giggi_l. Means

element in conjugate class divides order of G (equal to element of cosets).

Conjugate subgroup if there is a subgroup of G: H ¢ G K C G. Then we say that H is conjugate

to K GEHu-1-Ff) if:
g € Gs.t.K = gHg ! :={ghg™' : h € H} (1.68)

In abelian Group, every element form a conjugacy class.

Normal(invariant) subgroup and quotient group (A& F2£ 5 &£

7E X 1.16 (normal subgroup / Invariant subgroup) Subgroup H, H C G is called normal subgroup
or invariant subgroup if
V¢eG gNg'=N (1.69)

Sometimes denoted as: H < G
O



1.7 Homomorphism and Isomorphism

If N <G is a normal subgroup, then the set of left cosets G/N = {gN|g € G} has a natural group

structure with group multiplication defined by:

(g1n1)(g2n2) = (g3n3) (1.70)

Group G/N is known as quotient group(& ). Below, prove quotient group has group structure.
1 Identity element: n; g;n, = g,-gi‘lnlg,-nz =gin3 = NogN — gN
2 Inverse element: g~'n; gn; =ny = g 'NogN =N
3 group multiplication law, prove by contradict. If g;n,g;ng = gin, & gin,, g jnk =gy,

_ -1 -1 1 7 7 -1 _—-1_r-1
= & = QkMyNy &7 Ny = g Myl &7 Ny

gknagy ng 887" = ginvg; ny 8,85 (1.71)
gk”ancg]_'l = g;cnbndgj_'l
8k = g;{”e

Coeset generated by g, and g; are the same, contradicts with supposition.

1.7 Homomorphism and Isomorphism

E M 1.17 (Homomorphism and Isomorphism) Consider two groups, They are: (G,m,Le) and
(G’,m’,I’,¢’)
o A homomorphism (] %) is a map from G to G’, which preserve group law:

:G—->G' VvV 1,22 €G
4 s1-8 (1.72)

e(m(g1,82)) =m'(¢(g1), p(g2))
o If pisa 1-1 and onto map. Then it is called Isomorphism ( [5]#)
o when G=G’ and ¢ is an [somorphism, ¢ is called the automorphism of G.
A common slogan is Isomorphic Group are the same.
O

7E X 1.18 (Vector Space) Consider a vector space over field F, There is a non-empty set V. two binary
operations.
element in F are called scalars, element in V are called vectors.
There are 8 axioms.
o Associative of vector addition: u + (v +w) = (u+v) +w.
o Commutativity of vectors addition: u +v =v + u.

Identity in vector addition: 30 € V Vu e Vu+0=u

©

o Inverse in vector addition: Vu € V, A—u €V s.t. u+(-u) =0

Compatibility of scalar multiplication with field multiplication: a(bv) = (ab)v

[

Identity element of scalar multiplication: 31 € F 1lv =v

©

o Distributivity of scalar multiplication with respect to vector addition a(u +v) = au + av

10



1.8 Direct Product and Semi Direct Product

o Distributivity of scalar multiplication with respect to field addition (a + b)u = au + bu
O

7E X 1.19 (Matrix Representation of group G) A matrix representation of group G is a homomor-
phism (B %) :
T: G— GL(n,k) (1.73)

for some positive integral n and field k.

V is a vector space over a field k. GL(V) represents all invertible linear transformations of V. Then
T:G— GL(V) (1.74)

is a Representation of group G. where V is a carrier space.
O

Automorphism Automorphism group of G:
Aut(G) ={vlv=1s0(G,G)} (1.75)

It satisfies group structure.

Hom-Kernel theorem E7S#ZE For a homomorphism G — H.
1 Its kernel is invariant subgroup. F <1 G
2 Quotient group of kernel ( G/F ) is isomorphic to H.(each coset of F corresponds to one element
in H)

1.8 Direct Product and Semi Direct Product

Direct product group Exist group G| and G, direct product group is :
G =G ®G2={(g10:828)I810 € G1 825 € G2} (1.76)

It has structure of group.

Direct product decomposition G has subgroups G, G,. Vg € G.exist one g;, € G and one

g5 € Gas.t. g =g1a828, 812828 = 8281« Then G = G1 ® G
Properties of direct product decomposition

1. Gi NG, = {e} Prove by contradiction. If G| N G, = {e,a} = (e,a) = (a, e) Contradicts

to requirement each element in G can only represent in 1 way.

11



1.8 Direct Product and Semi Direct Product

2. G| and G are invariant subgroup of G Using commute property between g, and g2,

(810828)81i(81282p) " = glargZﬁgliggﬂlgl_;

. (1.77)
= g1081i&14 € G1
Semi direct product Exist group G, Gy, A(G1) < Aut(G), f = Hom (G,,A(G})).
G =G ® Gy ={(g10-828)81a € G1 825 € G2} (1.78)
(810> 828) (810, 828) = (810 S50p(810), 82882p7) (1.79)

It has group structure.

properties of simi direct product (G, e») is its invariant subgroup, but (e, G») is not invariant

subgroup.

12



%2 _”E Representation Theory

2.1 Unitary Theory

A. finite groups have equivalent unitary representations
for finite groups and for compact Lie groups, all representations are equivalent to a unitary one.

proof ...
every representation of a finite group is equivalent to a unitary representation.
For representation in complex space, define

S =3eecD(8)'D(g) 2.1)

S is hermitian and is positive semidefinite. So we can decompose S matrix. (U is unitary matrix)
S=U'du (2.2)

dy

d= d> (2.3)

We want to say thatVj,d; > 0. if d; = 0, then, a s.z. Sa = 0, then a'Sa = 0, which means:

Zeea'D(8) ' D(g)a = Z(D(g)a) (D(g)a) = Z[|D(g)all* = 0 (2.4)
This is not possible because D(e) = I, Then we define Hermitian matrix X:
Vdi

x=s5"72=yf \ds U (2.5)

Then we have a similarity transformation (X" = X, (X"1)" = X~1)
D'(g) = XD(g)Xx™" (2.6)
Then (S=XX)
D'(g)'D'(g) = X"'D()' XXD ()X~ 2.7)
however: (2G=G)
D(g)'XXD(g) = D(g)'SD(g)
= D(8)'(ZrecD(W)' D) D(g)
= hecD(hg) D (hg)
=YhecD(W)'D(h) =S = X?

(2.8)

Then
D'(g)'D'(g) =1 (2.9)



2.2 Shur’s Lemma

Which means the representation D is equivalent to a unitary representation D’.
O

B. Unitary representations are always completely reducible.
Every representation of a finite group is completely reducible. (Finite group < Unitary group)

Here have two proof,
We need to prove that if V; is an invariant subspace, then its complement V;" is an invariant

subspace. if v € Vi and w € V}- then: (v, w) = 0 Then:
0=(D(g)v,w) = (v, D(g)'w) = (v, D(g™")w) (2.10)
Which means:

D(g)w eV} (2.11)

Then, its complement is an invariant subspace.
0J
The below is a proof from the book (Lie groups and particle physics—I don’t remember)

If P is a projection operator, and the group is a reducible group, then:
PD(g)P =D(g)P (2.12)
apply conjugate to the operator above:
PDY(g)P = PD(g)" (2.13)
As the theory above, We can only consider unitary representation. Which means:
D(g)" =D(g)"' =D(g™) (2.14)

(I don’t quite understand why D(g)~! = D(g~')-Because the definition of the group), We say that
(don’t know why—Rearrangement Lemma) when g travel through all the element in G, g~! will travel
through all the elements too. So,

PD(g)P = PD(g) (2.15)

however, this equation is equal to:
(I-P)D(g)(I-P)=D(g)(I-P) (2.16)

So we say that it is completely reducible.
O

C. Every finite group is equivalent to direct sum of ir-Unitary-Representation

2.2 Shur’s Lemma

To begin with, we need to define a intertwiner.

14



2.2 Shur’s Lemma

FE X 2.1 (Intertwiner) And intertwiner between Representation D and D5 is a linear operator from

space V| to space V,. (Suppos two representations have same Field K = R or C)
F: V1 - V2 (217)

‘Which commutes with G:
FDi(g) = D2(g)F (2.18)

1. The kernel and the image of F are invariant subspaces of D; and D, Firstly, We talk

about kernel:

ifveker F= FD|(g)v=Dy(g)Fv=D3(g)0=0= D (g)v € ker F (2.19)
This proves that The kernel is an invariant subspace of D;.
Then we talk about the Image space:
if wy=Fwy; = Dy(g)wr =D>(g)Fw,=FD(g)w, € Img F (2.20)

Which states that the Image space is an invariant subspace of D>.

2. If D, is irreducible, F is injective or zero
D is irreducible & ker is invariant subspace = Ker = {0} or V (2.21)

Ker = V; means F is Zero.
Ker = {0} means F is injective. P.S Injective means one to one. We need to know why injective

can be derived from kerF = {0}. Here prove by contradiction let’s suppose F is not injective:
Fvi=vy & FVi=vy V] #v (2.22)

This means that: (This is a special case in linear space)

F(vi—=v})) =0 (2.23)
Then, we know that:
vy — V| € kerF (2.24)
As we know that:
kerF = {0} (2.25)
Then:
vi—v;=0—->v=V] (2.26)

Which contradicts to supposition, then F is injective.

15



2.3 Regular Representation

3. If D, is irreducible, F is either surjective or zero Surjective means onto.

D»is irreducible & Img is invariant subspace = Img = {0} or V> (2.27)

F=0 or D equal to D, If Fis injective(1-1), it can’t be zero operator,— F is 1-1 onto. Otherwise,
F is zero.
If Fis 1-1 onto, dim (V) = dim(V,), D and D, are equivalent
For representation D(g) D»(g), Exists a intertwiner s.t. FD(g) =
D>(g)F, then D(g) is equivalent with D,(g) or F = 0.
O

Shur’s Lemma 2
Consider the situation of D| = D,, Then F is an linear operator from V;
toV;.

if D is an irreducible finite-dimensional C Field representation, 3F : V — V s.t. Vg €
G FD(g) = D(g)F. Then, F = Al.

For a less formal representation: (we use the language of matrix to say this) A matrix which
commutes with all matrices of an irreducible representation is proportional to unit matrix. Need to
know that we need V to be a complex vector space, a real vector space might not have real eigen vector.
U

If F is an matrix, then consider it has eigen value A and eigen vector v. As we know the constrain

for the intertwiner is that it commutes with Representation operator:
FD(g) =D(g)F (2.28)
However, we notice that
F-A (2.29)
is also an intertwiner. But this linear operator has a kernel space:
(F-AHv=0 (2.30)
But as we discussed before, if D is an irreducible representation, it means that the kernel space should
be empty or be the vector space V itself. So we need to let this new intertwiner vanish all the vector

in the space, which means that:
F=A (2.31)

OJ
If D are not equal to D>, the intertwiner is unique upto a constant. This is because F; 'Flisa

self-intertwiner in D which is porpotional to identity operator, then:

Fi =4F, (2.32)
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2.3 Regular Representation

2.3 Regular Representation

Group Algebra Vector Space with an extra bilinear product operation is called Algebra. We have

a vector space of linear combination of group elements: (Field is C, We always let v, to be complex

number)

V:ngg
g

with an addition operation:

V4w = Z(vg+wg)g
g

(2.33)

(2.34)

vector space with an extra bilinear product operation is called Algebra. The bilinear product operation

would be:

vew = ngwg/gg’ = Z(Z VeWa-15) N
88’ h 8

I will make slightly explain to this formula. Firstly, it would be easy to realize:
g/ — g—l h

while:

okay, then why
Actually, we only need to know:

this is because:

Using Rearrangement lemma, we know {g~'%| h € G} contains all the element in G.

Now define inner product:
_ *
(v,w) = VeWe
g

Regular representation

Dreg(g): Ve gy

Actually,

g v= thgh = ng—lh/h,
h n

17

(2.35)

(2.36)
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(2.38)

(2.39)

(2.40)

(2.41)
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2.4 Great Orthogonality Theorem

Which means:
(& V)h=vg1y (2.44)
in regular representation, there is only one element in each row and colume.
(Dreg(g))'; = 1 only when , gj =g 'h, gi=h— g =gg, (2.45)
Regular representation is unitary because:
T L _ =0,
(Dregl(g?)l], = 1 only when (?gl =g (2.46)
(Dreg(g7))'; = 1 only when g™ g; = g;
They are the same!

Regular representation is unitary, so it is completely reducible to irreducible components.

2.4 Great Orthogonality Theorem

A. Orthogonality theorem for representation Defines(u, v are Irreducible, Inequvilent, Unitary,

Complex reps):

(A = 2 (D ()P (87 @47
8
It is a linear map:
Ay = u” € Vy o (ALY " = v € Vi (2.48)

Then:

Dy () A =Y Dy(9)D () Dy (g ™)
g/

= D(88)D(g™h
gl

=) D(WDy(h'g) (2.49)
h

= ZD(u)(h)D(v)(h_l)D(v)(g)
h

= A D)(8)
According to 2.2 (Shur’s Lemma 1) , this is the intertwiner. f uy = v, A=AL Ifu #v, A=0. (
= means equivalent)

In all we say that:

(ALY, = 6,0, A7 (2.50)
> (D () (P (87 = 6,65 AL 2.51)

8
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2.4 Great Orthogonality Theorem

Taking a trace can find the coefficient:
ki ki ~ -
tr(A{) = S (AR = 8 D (D () (D (7)) = 6,y N(G)6,
g (2.52)
= 5#V5§ /lx(tkl) = Opvdy /lz(tkl)
Used the property that: D(g)D(g™!) =1L

Then:
A0 = %MG)&; (2.53)
Orthogonality theorem for representation:
S0, D ts Y, = MO 5511 (2.54)

If the representation is equlvalent to unitary one (It always does):
N (G)

Z(D(#) (&) (D}, (8))) = (wl 5 (2.55)
Write as (Better for memory)
N( ) Z<D<m (8D (D, (8))] = cw 5 (2.56)
Then define a Group Algebra Element
i dy i
Vi S\NG) > (Dw(@); g 2.57)
g
Since they are orthogonal with eachother:
Y dl <N(G) (2.58)
U

B. Regular representation’s Subspace Carry ir-Unitary-rep Regular representation space is Group
Algebra space (Field is C), Define d), dimensional Subspace. Sorry that used D before and A here for

rep.

{ey = ZA y(gNgilu=1---d } (2.59)

This subspace is invariant under Regular representation, And Carries ir-Unitary-rep p. Direct cal-

culation shows

ZA y(8)gi

L(g)) ZApv(gl)g]g, ZA 7(87"'81) 8k

—ZA n (g )AL (g1 gk = ZA P (DAL (g8, (2.60)

=A?,(g)) (Z Azi(gk>gk) .

k=1
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2.4 Great Orthogonality Theorem

WX BT e TEHHEESLE
ey = Agﬂ(gj)e(,. (2.61)

BEEAMT T X Vector in subspace HY/E
L(gj)euxt = eaAgﬂ(gj)x”. (2.62)
Inall, We do find a subspace and its basis, which is invariant under Regular representation and

Carryies ir-Unitary-rep d.

C. Completeness In this paragraph, we prove basis mentioned above expand the group algebra space.
We prove by contradiction.

Regular representation is Unitary = it’s completely reducible. Group algebra can not be expand
by basis mentioned above = Exists a different subspace carry irreduciable-Unitary-representation 7.

Suppose this subspace basis to be
N(G)

ea= Y Xa(ggjla=1-dr . (2.63)
j=1

Carries ir-Unitary-rep r means

L(g) [ Y Xa(8))gi | =8> Xa(g))gi = Y Xa(8))gigj = Y Xa(s;'81)8k
j ; j p

(2.64)
N(G)
=> AL G| Y Xp(g)g; |-
B J=1
Explicitly:
N(G)
D Xalgi'ggr =) A (e | D Xs(gn)e) |
k B j=1
N(G)
D Xo(gig)ee =Y A (e[ D Xalge; |- (2.65)
k B j=1
N(G)
=> A Y Xp(g)g; |-
B J=1
For the group algebra basis gg term,
Xo(8i) =Y Als(2)Xp(g0)- (2.66)
B
Construct group algebra vector:
D Xo(g)gi=) Y Ali(8)Xp(20)8i
i i B
(2.67)

=" Xg(g0) (Z A:;;;(g»g,-)
B i
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2.4 Great Orthogonality Theorem

Which means this subspace basis can be expand by previous basis, Contradicts to Assumption.

D. Burnside Theorem The group algebra space can be expand by basis mentioned above, which

means its space dimension N(G) is equal to sum of these sub space.

N(G) =) d. (2.68)
M

E. Number of Ir-Unitary-Rep in Regular For each Inequivalent irreducible rep u, exists d,; sets
of subspace basis. If Regular representation can be expanded by inequivalent Irreducible-Unitary-

Representatioin by:

Dyeg(g) = X_I(D(/Jl) @ @D & )X. (2.69)
——— ———
dy term d,» term

F. Great Orthogonality Theorem for characters (column, 3l]) Great Orthogonality Theorem is:

Zw(,,)(g)) (Diy(g™), = N(G)a,wa’ 5 (2.70)

Consider the character: (we take k =i and [ = j — Character is the trace of rep matrix)

> xXw(@xm (8™ = N(G)op (2.71)
8
For Unitary Representation, (For Finite Group And Compact Lie Groups, All Representations are

equivalent to a unitary one. Equivalent rep has same character.)
> X (@)X, (8) = Noyy (2.72)

g
let use n, label the number of elements on class k,, then attain Great Orthogonality Theorem for

characters
D nax{pxi = N(G)oyu (2.73)
a

We can construct a r different orthogonal k-vector (k means the number of classes, r means number of

representations)

W(«/‘ X V02X Gys s VX () (2.74)

So we say that: (r means number of representation)
r<k (2.75)

Always write as
N(G) Z “X(#)X(V) (2.76)
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2.4 Great Orthogonality Theorem

F. Judge if a representation is irreduciable Suppose a representation (or it is equivalent to this

representation, D (,) means irreduciable-Unitary-Representation):

D ~ ®a"D (2.77)
Then

X =Y a ¥ 2.78)

D maxX'x =3 ata’ } nax(xi)
a 7R’ a

Consider:

(2.79)
= a"a’N(G)éur = N(G) Y (a*)?
JTR% K
By calculating |
NGy 2 X A =D (@) (2.80)
a H

We can understand whether it is a irreduciable representation

G. Find coefficient a* of each irreduciable representations in a reduciable representation Con-

Z naX()X" = Z a* Z MaX ()X ()
M a

a

sider:

(2.81)
=Y a"N(G)duy = N(G)a”
u
Which means:
1
Ve — — ax e 2.82

H. r=k Firstly, we define subspace of group algebra space with dimension k. Then we prove this

subspace have r basis. This k-dimensional group algebra subspace basis is

Ko=) gla=1--k¢. (2.83)

g€ka
We can construct vector in this subspace from a general vector (coefficient of same class basis are the

same)

> flggi =Y f'(s)gi Inwhich f'(g)= L > fg g (2.84)
i i N(G) J

What’s more, each vector ) . f(g;)g; in this subspace, must satisfy

— 1 _1 . .
f(gi) = NG ;f(gj 8igj)- (2.85)
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2.4 Great Orthogonality Theorem

For vector in group algebra space, as discussed in part B, Can be expand by basis (2.59)

> flegi=> an (3 A,’ii(gi)gi) : (2.86)

uvp

Consider the Constraint of coeﬁicient 2.85

flg) = N( rad > ab (4ln(er'gig)

J Mvp
_ 1 *
=Y a, Z N(G) A8 AN (20 AL (2)) | (2.87)
uvpap
« 1
= > i, Al(2) Z NGy A (84 <g1>)
uvpap
Using the Orthogonality of representation
> oy Aau(81) AL, (8)) = Z-6apSur. (2.88)
J N(G)
Thus
1
f(gl) = Z ayv ﬁ(gl (d 6aﬁ6uv),
uvpaﬁ P
= Z _a,u,uA(pwz(gl
e (2.89)
—Z “##X(p)(g’
:Z%X(p)(gi :
P

Thus, Every vector in this subspace can be write as

DD apx(ydei= ap| Y x(, (gi)gi) (2.90)
i p p i

Which means this subspace must can be expanded by basis:

{ZXZ‘,,)(gi)gilp =1- r} (2.91)

Which means
k<r. (2.92)

combined with constraint » < k mentioned in E, Inall

r=k. (2.93)

I Orthogonal of character in another way Define matrix

, ng a
F,ua = W}((#) (294)



2.4 Great Orthogonality Theorem

Using the property proved before that r = k, this is a square matrix. satisfies:

. . Na g wa
(FFOu =) Fulya= VNG YO\ NG w = Z N(G)Xw))((v) Ouv- (2.93)
a a

‘Which means

T * _ np b ng a _
From which, we get another orthogonal relation
1 b ~a _
NGy 2= "X Xy = Sab (2.97)
U

J (Older Way). r=Kk for regular representation

Regular representation decomposition Consider Regular Representation:

Nforg=e
Xreg(g) = (298)
Oforg e

With this property, by using the conclusion in D., Find a* of regular representation
1 1
no_ ax . a
a = N(G) §a na)((lu)/\/reg N(G)X(#)Xreg d (299)

Orthogonal property After finding the coefficient of all irreduciable representation, We have

a useful property: (a=1 means class which contains identical element)

N fora =1
- (X’eg)“ = Z a“)(f#) = Z dﬂ)(?u) = ZX(I/A)X?M) (2.100)
Ofora#1 # m P
We focus on this property:
Z I N fora =1 2.101)
XX = .
4 (w0 Ofora #1

Class vector and class Algebra Define class vector in Group Algebra.

Ko=) g (2.102)

8€ka
Class vector is invariant under conjugation:

§Kag™' = K, (2.103)
Product of Class vector is invariant under conjugation:
§KaKog ™" = 8Kag ™ gKog™" = KKy (2.104)

We state that: If a vector is invariant under conjugation,(for all g) it must be a linear combination

of class vectors.
Ko =D CapeKe (2.105)
C
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2.4 Great Orthogonality Theorem

Hence the K, form an algebra themselves, Fixed by coeflicients Cp
For a given conjugacy class k,, there is a class k,» whose elements are the inverse of those in &,
and n, = ny (n, means number of elements in a clas). k, might be equal to k... Then K,K,/ contains
n, copies of identity.
n,forb=d

Cup1 = (2.106)
Oforb #a

Class algebra representation Consider a matrix:

D{, = Dyl (2.107)

8€kKa
(Sorry that I used &, to denote conjugacy class, and K, here.) This matrix commutes with all matrix

in representation, Using Shur’s Lemma.

_Ja
(#) /l(”)l[ (2.108)

Taking trace we attain:

tr Z D, (g) =tr /1?#)]1

g€k,
MaX () = A
o (2.109)
MaX Gy = A X
/la _ naX(/J)
(W) —
X
The matrix we defined satisfies Class algebra 2.105.
Ayl = Z Cabed(y (2.110)
insert 2.109 we attain: i
a c
MaX () "X () "X ()

= Z Cabe 1

1
X X (#) c <u> (2.111)

ZX (X = Z Cabc ZX WX

By using the property of regular representation (2.101)

b _ ni
D XX = anbl—nanbN(G) (2.112)
H c
Then using the property of the coefficient C (2.106)
N(G
b (6) forb=d
a = n
D X (WX = ¢ (2.113)
H Oforb #a
Summarized as: -
N(G
a b _
D XwX( = . Ob (2.114)
u
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2.5 Induced Representation

For regular representation (unitary):
a _ _ ax
Xy = X (2.115)
Finally: (row orthogonality)

N(G)
ax . b _
2 XX = = Oab (2.116)
u

Then we can define k different r-dimensional orthogonal vectors:

ng
N(X?l),/\/?z)"‘/\/?r)) 2.117)
then:
k<r (2.118)
So, for regular representation
r==k (2.119)

2.5 Induced Representation

For a representation B(h) of G’s subgroup H, can induce a representation U(g) of G.

Representation space For representation of subgroup H (W is its representation space)
B: he Hw— B(h) e GL(W). (2.120)

Then, define representation space constructed by functions image elements in group G to vectors in

Linear space W.
V={flgeGm— f(g) eW, f(hg) =B(h)f(g)}. (2.121)

Sometimes written as
fa(8), (2.122)

in which « is the index in space W.

Representation Induce representation

U: geG-U(g) eGL(V)s.t.U(g)fo(g")=fo(8"8). (2.123)
[Proof of image still in representation space V] Requirement of representation space is
{#thg" = B (g, (2.124)
Label transformed function to be ¢
Ug)f =¢. (2.125)

transformed function Satisfy requirement of function

@o(hg")=fo(hg"g)=B(h)fo(g"g)=B(h)¢o(g") (2.126)
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2.5 Induced Representation

Which means transformed function is still in representation space.

O
[Transformation preserves group multiplication]
U(gU(g2)f =U(g1) (U(g2)f) - (2.127)
U(g)U(g2)f o (g) =U(g1) (U(g2)f) © (&) 2.128)
=U(g2)f o (g81) = fo(88182) =U(g182)f ° (g)-
O
Basis of rep space A group can be decomposed into its Right-Cosets

G={Hg|,Hg,.---Hg;}. (2.129)

Noticed functions in representation space satisfies relation

{#(he) = BN £(9). (2.130)
Function in representation space is fixed by its effect on right-coset decompose elemet f(g;) - - - f(g1).

Define basis as (e, span space W, g is element of Right-coset decompose element)

V = Spanc {e.;le;;(gk) =6xélr=1---d,j=1---1}. (2.131)
Vector in representation space can be written as
£=Y e (2.132)
r.Jj
f maps elements in group (denote by £;g;) into vector in space W by
flhigj) =Y B(h)fer;(g)). (2.133)
rsJ
Explicitly
F(higj) =Y B(h) fFen(g)).
r.k
=ZB(hi)frk5kj5r, (2.134)
r,k
= B[,
Consider the effect of B(h;) on é,, in which &, = (0,--- 1 ---)T, @ labels number of coordinate
——
rth
element (o« = 1 — d which is dimension of rep B space W).
{(B(h)&), = B(hi)a (2.135)
Thus:
fa(hig)) =Y f7B(hi)ar, (2.136)
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2.5 Induced Representation

Effect of induced group element For induced group rep element U(g), its effect on function f

shows:
U(g) fo o (higj) = fo o (hig;g)-

Our calculation of image of function f is based on Right-hand Coset decomposition, Suppose

higjg = hirg;.
Which means
hi = higjggj_'/l-
[There is only one (A, g;-) satisfies requirement] According to equation above
gj8g; € H.
Assumption: there exists two g;» denoted by g1, g> satisfy this relation.
18, € H

means they expand same right-coset, contradicts with requirement.

Sometimes, write as
7 =7

It is interesting that j” is not influenced by #;.

The way to find g, is check all g, k = 1---1[, and find one satisfies

gjggj_-,1 €eH

Based on expansion of function f :

{fahig)) = 52, FIB D
We obtain
U(g) fo o (hig;) =fa o (hig;8),
=fulhirgp) = > 7 B(hit)a.r,

=> 7 B(hi)apB (81887 pr =Y (Z B(g;8g;" ),3,rfrf’) B(hi)a.p-

r

r.B8 B
We suppose it to be:

@ o (higj) = Z ()Oer(hi)oz,r

Basis transformation
) 4 .,
Pl = Z B(g;gg; prf" -
r

(2.137)

(2.138)

(2.139)

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

Denote space j as first space, space 5 as second space, representation space is a tensor product space
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2.6 Other way to construct representation

of these two

v=v"evi¥ (2.148)
Vector in this space can be written as
T
SO:((’011,...(,Ddl,...soll,...(pdl) (2.149)
Noticed that ¢#! is only contributed by:
=" B(ggg;)prf (2.150)
r
Transformation matrix can be written as
0 B(gigg;) -+ 0
| ————
j’(1)’s row element
0 B(gagg;)) S 0 0
U(g) = (2.151)
7(2)’s row element
0 0

In text book by Prof. XinZheng Li ,written as (ij is first space index, kl is the second space index)

U(g)ik.ji = B(gigg; - (2.152)
In which dot B is defined as
B(g,-gg]_-l)zB(g,-ggJ_.l) when gl-ggjfleH ; otherwise 0. (2.153)
write as matrix:

B(giggy") - B(gige;") - Blgigg")

B -1y ... B -1y ... B -1
Ulg) = (82887") (8188;") (8288,") (2.154)

B(aigey") -+ Blgigg;") -+ Blaugg")

2.6 Other way to construct representation

Direct product of group representation for group representation A and B of group G, direct prod-

uct of group representation would be
(A® B)(g) = A(g) ® B(g). (2.155)

It is not irreducible even A and B are irrep.

Direct product Group representation A group is a direct product group of two subgroups. g =
812828 These two subgroups have representations A and B. The representation of the direct product

group would be
D(g10828) = A(810) ® B(g2p). (2.156)
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2.6 Other way to construct representation

[Rep of direct product group is irrep] Prove by character-orthogonality property

X(0)(8) =tr (D(g)) =tr (A(g1a)) tr (B(g2p)) - (2.157)

Check if rep is irrep by calculating (A, B are irrep)

1 1
NG > Xy (@x)(8) =) NG (810)X(B)(828) X 4y (810) X ) (825)
g ap

1
=2 N AN{CN * * (2.158)
% N(GI)N(GQ)X(A) (g12)X(8) (gZﬂ)X(A) (gla))((g) (82p)

=1.
0

Minimize group representation D to its subgroup B  For representation D of group G. This repre-
sentation can be minimize to its subgroup H. Noted as D|p.

For irrep D, its minimize group rep D|y is not always irrep!.

Frobenius lemma

group G carries ir-Unitary-rep A,
subgroup H carries ir-Unitary-rep B,
group G carries induced rep U],

subgroup H carries minimized group A|g,

A

numbers of ir-Unitary part A showed in rep U|p = numbers of ir-Unitary part B showed in rep
Alg.

Based on orthogonality of character, the 5. statement can be proved by showing following

equation | 1
N(G) g)‘?f‘)(g)x(w(g) ~ N(H) ?X&ﬂh))(mm)(h)- (2.159)

The LHS can be written as

!
1 . 1 . _ B
N(G) ;MA)(S’)X(U)(@ = NG gx(m(g) ;trB(gigg,- ) (2.160)
Noticed
{Zf‘:l trB(gigg;") = O ﬁtrg(lgt_l)_ (2.161)
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2.6 Other way to construct representation

leads to
ﬁ g X (@xw)(8) =ﬁ g Xia) (@) g trB(gigg;")
=ﬁ zg:XZ‘A)(g) zt: ﬁtﬂ?(tgt‘l)
RN 2.2 K@ Ber)
NN 2 2 KB Why?

! . : 1 )
:N(H) ;X(A)(S)IVB(S) = W ;X(A)(h)trB(h),

1
N > X (W xs (h).
h

(2.162)
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g5 =& Discrete Group

3.1 Young diagrams

For a symmetric group, the conjugacy will not change the circle structure. So we can find n-tuple

v, to gives the number of p-circle. Which satisfies:
> pvp=n 3.1)
p

A conjugacy class is formed by all elements of given circle structure (v)

Also, we can define a n-tuple A to difine conjugacy class, this is done by:

=) 1 (3.2)
q=p
For these 4, they satisfies:
 Ap=n (3.3)
p
Also:
A1 2 > ... 4, (3.4)

Conjugacy class are in one to ine correspondence with the partitions of n.

3.2 representation of Symmetric Group

We have shown that the number of irreducible representations is equal to the number of conjugacy
classes, and we know that the conjugacy classes are in one-to-one correspondence with the Young

tableaux.



ZME Lie Group

4.1 Some Differential Geometry

A Lie group is a group G. The group and manifold structure are required to be compatible in the
sense that product and inverses are continuous maps. This can be combined in the requirement that

the map

GxXG—>G
4.1)

(81,82) F 8185

are continous.

Manifold The manifold is defined by the atlas. which means we cover the group G by open sets

U;. And define a set of charts from U; to R? i.e. invertible maps.
¢i:GoU —VicRY (4.2)
we have to require that on the overlap of the open sets U;; = U; N U}, the change of coordinates

is differentiable. i.e. the maps:
piow; 1V >V (4.3)

are differentiable bijections

Then Consider about the functions. we want to talk about the differentiability of the functions:

f:K—>G
4.4)
g:G—- K"
These functions are differentiable if:
giof : K-V
4.5)
go ‘101'_1 Vi — K™
are differentiable.
Vector Fields To begin with
EX 4.1 (C*(M))
for f: M—R,if fop;'ViVi— Rare C® = f are C*(M) (4.6)
vector field is a linear map: &€ : C*(M) — C*(M). that satisfies product rule:
§(f8) =ré(g) +&(f)g 4.7)

We can define vector &y:

&) =60 x) (4.8)



4.1 Some Differential Geometry

Tangent space Tangent space at a point x of the manifold M:

T = {&;|¢é is a (local) vector field}

4.9)

Tangent Map For a differentiable map F' : M| — M>, The tangent map T, F : T,M; — Tp(M> is

defined by:
LF()(f) =v(foF)

where: x € My, v € T,My, f € C*(M;). This is also denoted by F

(F*g)F(x) = TxF(b’:x)
Where £ is a vector field on My, F.£ is a vector field on M,

Some properties of tangent map

(i) If there are two differential map G : M| — Mj and F : M, — Ms3. Then:

T.(FoG)= TG(x)(F)Tx(G)

Consider: f € C¥(M3) v e LMy w=T.G(v) w € T )M
Then:
T(FoG)(v)(f)=v(foFoG)=v((foF)oG)

=T.(G)(v)(f o F)

=w(foF)

= TG0 (F)(w)(f)

= [T (F) 0 T(G) (0] (f)
End of Proof

(4.10)

4.11)

(4.12)

(4.13)

(1) Tangent map of identity map idy is Tyidy = idr,m. Called Identity map on the tangent

space.
(iii) if Fis invertible map: F : M| — M>, Then:

(T.F) ™ = Tr(o (F7)

local identification of tangent vector Consider chart (¢, U) of M,
Tx¢ : TiM — T¢(X)V = Tq)(x)Rn
From my perspective, this is a some what definition
; 0
Tip(v) =V' (x)ﬁ
x
¢ is invertible = T, ¢ is invertible

dim(T,M) = dim(Ty)R") =n
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4.2 Lie Algebra

Tangent map in coordinates Consider differentiable map F : M — N

M: ($,U) ¢(x)=(x'x?--x")

(4.18)
N @W) 60 =0y 9™
T.p(v) = vi(x)% € Ty R"
) (4.19)
Typ(w) = w' (x)a—yl. € Ty R™
Consider:
F=goFop!
F :R" — R™ (4.20)
F x> F
And f is a function of (y!, y?---y™)
Ty (F) (' 8,0) (f)
= V'3 (f o F)(x)
=y gﬁ : %(x) 4.21)
= v (8 F7)(x) (81 ) ()
= [DF ()] /va,i £ (»)
Integral curve Integral curve of vector field & on manifold M is a differentiable curve
ag: la,b] > M tela,b]l— ag(t)eM (4.22)
Such that:
O (1) = Ty (ag) (1) = Ear) (4.23)

Flow Flow ¢(t,x) = ¢;(x) of the vector field & on M is given by unique integral curve with the

initial condition ¢(0, x) = x

4.2 Lie Algebra

left translation take a fixed element h, the left translation is defined by:
Ly:gm hg (4.24)
In coordinates, the left translation would be:
Ly :a®— B a%) (4.25)

which satisfies:
¢(g) =a (4.26)
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4.2 Lie Algebra

and
¢(hg) = B* (4.27)

The left translation also acts on functions on manifold. For a function f, the new function is the

old function move along the manifold.

(Lnf)(hg) = f(g) (4.28)

GX—ELL~F-4 [n] DIt also induces a map on tangent vectors, the differential map (or push-
forward), which maps tangent vector X at the point g to the vector dL;, o X at the point g, which

satisfies:
(dLpo X)[f(hg)] = X[f(8)] (4.29)

The differential map allows us to single out a particular kind of vector fields, namely those that

are invariant under the differential maps of all left translations
FEM 4.2 left-invariant A vector field is called left invariant if:
X|pg =dLpo X|, forallg,heG (4.30)

In the difinition, for left-invariant vector fields:

Xlng[f(hg)] = X|g[f(2)] (4.31)
R [E T
Left-invariant vector field
T Lo(&x) =&gx Vx,8 €G, (4.32)
Also denote as:
(g*f)gx = ggx (4.33)

Vector space isomorphism The vector space of left invariant fields is isomorphic the tangentspace.
L£(G) ST.G (4.34)
dim(L(G)) = dim(T,G) = dim(G) (4.35)

Lie algebra is closed under commute operation 1If £, n are left invariant vector fields on G, so is

[£. 7]
Firstly:

(81 Ex(f) =ép(fog ) =&(fog ")(gx) (4.36)
g lE(f)=¢&(fog)og (4.37)
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4.3 Lie Group Representation

Then:

In all:

Lie algebra g

[8:'¢.87'n1(f) = &' ¢(g2'n()) — 87 'n(gr'€(N))
=g, 'ém(fogog)—g n(é(fog ) og)
=£(m(fog™")og-n(é(fog™h))og (4.38)
=[&.n](fog ) og
=g.'[£.71(f)

g e =g, g7 ] = [€.71] (4.39)

X 4.3 The Lie algebra g of a group G is the space of left-invariant vector fields with the Lie bracket

as product.

Some Properties of flow Define integral curve of vector field &

If £ is a left invariant field,

Consider:

End of Proof

End of Proof

Obviously:

ag(t) = ¢(t,e) (4.40)
(1, x) = xag(t) (4.41)
#(0,x) = xag(0) =x (4.42)

O (xag) = T,(Ly 0 a)(0))

=Top(tyLx 0 1@ (0) = Top (1)L (€ar (1) (4.43)
= &L ()
ag(s+1) = ag(s)ag(t) (4.44)
ag(s+1) = ¢o(e) = ¢(t, ¢s(e)) = ds(e)aes(t) = ag(s)ag(t) (4.45)

4.3 Lie Group Representation

We want to represent Lie group on the vector space of Lie Algebra:
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4.4 Lie algebra representation

Adjoint is a Group Homomorphism
Consider conjugacy
Co: G— G Cy(x)=gxg™! (4.46)

Aut(G) is a Group of all invertible endomorphisms(Hom(G,G), Aut means automorphisms)

C, € Aut(G) (4.47)
There is a Group homomorphism:
C:G — Aut(G) gm G, (4.48)
C is indeed a group homomorphism:
Caigo () = 8a82%(8182) ™" = g18278; '8 = Cy, © Cyy () (4.49)
Representation of Lie Group
Consider:
Cile)=¢ (4.50)
Tangent Map:
1.C, : T.G - T,G 4.51)

FEMX 4.4 Adjoint Representatioin of Lie Group G

Ad: G - GL(L(G)) (4.52)
Ad(g) =T.C, : T.G —» T.G (4.53)

Ad is indeed a representation:
Ad(8182) =TeCqg, = TE(Cy 0 Cg,) =T, Cyq, 0 T.Cy, = Ad(g1) 0 Ad(g2) (4.54)

4.4 Lie algebra representation

Adjoint Representation of the Lie algebra

FEX 4.5 Adjoint Representation of Lie algebra The adjoint representation of Lie algebra on itself is
defined by:

ad =T,Ad (4.55)
ad : L(G) — End(L(G)) (4.56)
Ad(e) = id g (4.57)

o End(£L(G)) Contains all n X n matrixes.
o The image of Ad, Img(Ad) c GL(L(G)) is an dimensional manifold,It’s tangent space at Ad(e) =
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4.4 Lie algebra representation

idr(G) 1s a n dimensional vector space.
o T,G is isomorphic with L(G)
The vector at the space Img(Ad) C GL(L(G)) is some what:
Ora (1)
In which:

a(r) € GL(L(G))

We consider:
0y (a'(t)(‘fe)) (. eT,G — aﬂ?e(t) ne € T.G

We will find 8, (a(1)(€)) € T,G

ad(&e)(ne) = [€,1]e
Consider:
Cae(s) (@ (1)) = @g(s)ay(Dag(5)™" = ag(s)ay (Dag(~s)
Then:
Ad(ag(5)) (1) = Te(Cag(s)) (Me) = Te(Cag(s)To () (91) = To(Cop(s) © @) (1)
= 8iloae (s)ay (Dae(—s)
ad(&e)(ne) =TeAd(Ee) (1) = T Ad Toag (95) (1)
=To(Ad o a;)(9s)n.
= OsloAd(ag(s))me
= 050 oe (5)ay (1) g (—s)
ad(&:)(me)(f) = 050 lof (e (s)ay(Dag(=s)) E—F BHEE X
= 0500 f (ag(s)an(1)) — 0500 f (ay () ag(s))
=&on(fe—no&(f)e
End of Proof

The adjoint Representation is a Lie algebra representation

ad([&,n])(A) = [[£.1].4] = [, [n,A]] = [n. [€,n]]
= ad(£) o ad(n) () — ad(n) o ad(£)(n)
= [ad(&),ad(m)](2)
End of Proof

Suppose we choose a base, Then:

ad(&)(&)) = (&)1 = £, &
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(4.61)

(4.62)

(4.63)
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4.4 Lie algebra representation

denote:
l[ad ()15 = £,/ (4.67)

Commutation Relation

Will introduce some commutation relation

F ~ To(F ~
G —— & T —2 TG

Cq l [ Cred M@l Ad(F(s)
G —¢ ° & RE e EE

4.1: Commute Diagrams,Lie Group

o Left Diagram:
FoCy (x)=F (gx587) = F(Q)F(x)F(8)™ = Cr(g) o F (x) (4.68)
o Right Diagram

T.(F) OAd(g) =T, (F)o Te(Cg) =T, (Fo Cg) = TE(CF(g)) oT,(F) = Ad(F(g)) oT.(F) (4.69)

W) | A
6 — > TG
ad(3) ad (Te(® %)
T TG > ToG = Z(&)
L(6) e T, (F) e
4.2: Commute Diagram,Lie Algebra
VR
T.F (&) =& (4.70)
BI%AE G 1 G HrJLLSE Y Integral Curve:
ag(s)  ag(s) (4.71)
G Y Integral curve az(s) T B R 9514
Ee(f) =Toag(05)(f) f:G—R (4.72)

40



4.4 Lie algebra representation

FREE:
(T.F) =& (4.73)
T
E(f) = T.F(£)(f) = Toag(35) (f) (4.74)
G 11 integral curve ag(s) 75 ZHi 2 1554
E(f) =Toag(9)(f) f:G—-R (4.75)
NAE:
az(s) = Fag(s) (4.76)
HAEH LW N G ¥ Integral curve ag(s) 2k R &
{T.F (€0 () = Toaz (8 () “.77)
HEE, A A
Toag(f)s) (f) = TOFa'cf(as)(f) (4.78)
= dslof (Fae(s))
7E X
f'=foF G—R (4.79)
T
£ =0dlof (e(s)) (4.80)
= Toag(05)(f o F)
M T G ¥ Integral Curve i & 4 1F:
{6.(F) =Toae@)(f) £ :G >R (4.81)
T
_tit:'fe(foF) (482)
=T F(&)(f)
[l
RN
T.(F)oad(é.)(ne) = ad (T.F (&) (TeFne) (4.83)
# J& %| adjoint representation # P i :
{ad(€) () = dduloae () (ae(-s) (4.84)
TE, A3
T.F (ad(é.) (1)) (f) = ToF (950;loce (s) ey (t) g (=5)) (f) 4.85)

= 0500 f (Fag(s)ay(t)ag(—s))
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4.5 Exponential map

H A )
ad (T.F(£.)) (T.F()) (f) = ad(Ez. 1) (f)
(4.86)
= dyllof (g(s)ag(ag(=s))
RSN PLE TP EE Y
{Foc, ()= F (gxg™) = F@F@F(g)™ = Cy o F () (4.87)
T2
Fag(s)ay(t)ag(=s) = F o Cops) (ay (1))
= Cr(as(o) © F (@) (4.88)
= F (ag(s)) F (an (1) F (¢ (=5))
= ag(s)ay(Daz(~s)
By0ilof (Fag(s)ay(nag(=s)) = 8,0l f (az(s)ag(nag(-s)) (4.89)
T.(F)oad(é.)(n.) = ad (T.F(&,.)) (TeFne) (4.90)
]
BT — 3
T.F ([€,m]e) = [T F (&), T F(n.)] (4.91)

States T, (F) is a Lie Algebra morphism
Alinear map f : L(G) — L(G) is the tangent map of a group homomorphism F iff f is

the tangent map of a group homomorphism F.

4.5 Exponential map

Exponential map constructs the Lie Group From its Lie Algebra.

7E X 4.6 Exponential map For a left-invariant vector field & on group G, with v = &,. we have an
integral curve «,. with condition @, (0) = e. Then, the exponential map: Exp : T,G — G is defined
by Exp(v) = a, (1)

The exponential map is:
o(1) differentiable at the origin and To(Exp) = id s (c)
o(2) maps L(G) = T,(G) diffeomorphically into a neighbourhood of ¢ € G.
o(3) satisfies: F o Exp = Exp o T,(F) for a group homomorphism F : G — G

For the (1) statement,

denote: m,(t) = tv.

Exp omy(t) = Exp(vt) = ay(l) = a,(1) (4.92)
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4.6 Matrix Lie Group

Then:
OiloExp om,(t) = To(Exp o m,)(0;) = To(Exp) o To(m,)(0t) (4.93)
State that:
To(m,)(0t) = O;lom, (1) = v (4.94)
Then:
To(Exp)v = 0 oa,(t) = v (4.95)
End of Proof
For the (3) statement:

start with a lemma

Group homomorphism maps left-invariant field into left invariant field If F : G — G is
a group homomorphism and ¢ is a left invariant vector field on G. then & = F,(¢) is a Left-invariant
vector field on G.
For this lemma, denote ¥ = F(x), § = F(g), & = F.(&).
LioF(x)=F(g)F(x)=F(gx)=FolL,

(4.96)
LgOF(}C) :FOLg
Then consider Lefi-invariant condition on X.
TiLg (&) = Tilg o TuF (&) = To(Lg o F)(&y)
= Tx(Fo L )(gx)
¢ (4.97)
= Tng o Tng(fx)
= Tng(fgx) = gF(gx) = é?gx
Then, back to (3)
define 8,, = F o @, is an integral curve on G. associate to Left invariant vector field.
Then,
w = 0I|OIBW(I) = at|OF cay = TO(F © a’v)(al) =T,Fo (a'v(o)) = TeF(V) (4.98)
We prooved that:
w=T,F(v) (4.99)
Hence,
Exp oT,F(v) = Exp(T,F(v)) = Exp(w) = ,,(1)
p p( ) = Exp B (4.100)
=Foa,(l)=FoExp(v)
End of proof
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4.6 Matrix Lie Group

4.6 Matrix Lie Group

Parametrices

Entries: Work in a chart around the group identity I;. parametrices:

g=g(t) t=(@"-1")eR"
Where:
g(0) =14

and g has entries g/, where uy = 1---d.

. . e .
Vector fields: &; = fl(t)% = g—"(t)%(t) 0 — fl(t)tr(%(t)a%)
Generators: T; = 9%(0)

aga

ot
Tangent space at identity

Eimo = £ ()17 (Ti-)
=0 = ri;——=

t=0 agT

. 0 .
TG = {v‘tr(Tiﬁ)h/ € R”} = {V’Tilv € R”} = L(G)
8

Left-invariant condition

Consider a tangent map that maps the vector field

Tngo (E(f) =&c(fo Lgo)

The vectorfield £ at the point x is:

;987 a
3 W(x)@
denote that:
foLg(g)=f(gog) = f'(g)
Then: P 5
g 28p
E(f) = €15 0 g (g0
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4.6 Matrix Lie Group

Consider the last part:

Then:

However:

The constrain would be:

Write as:

Consider: x =Iandt =0

(&1

= g08)
0 8g1; 0
g, 6gp 8g1#
_ 0(go8)” 0
- g7 dg)
_0(80, 87" 0
- agf g,

0
_ P
- go”&;@&v

= (T, L
80 #O'agl;z

0'

0
Tngo(fx) (f) = ( )(T Lgo);w'a v |g goxf

0
= al’ ( )go‘u " Bg ylg soxS

08, 0
aﬂav

fgox = é‘: (g() )

0'

& W(go x) =& W(x)gopév

£(x)g —(X)

(5055 (g0) =£()g o

or'

& (g) (g) =&0)g T;

ot

Consider a basis of Left invariant vector field:

satisfies:

Then:

Li=¢ld,
£(0) =

J = oT:
f,aﬂ— i
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4.6 Matrix Lie Group

The Left-invariant vector field:

8 . 0g 0
_ 9 98
b= g =G Caui ogT
0

0
Lir= tr(TiTgT)

We can regard Lie Algebra as a span of the generators.
Commutator

0 0
[Li,L;]= tr(gT,-F) o tr(gT_,'W) - (ie))
§ § 5 (4.118)
= ”’(g[Ti»Tj]TgT) € L(G)

In this case:
[T, 7] = f,/* L (4.119)

Exponential map
Left-invariant vector field can be written as & = /&', Associated with generator: T = v'7;. Integral

curve: t; = 1'(s), a,(s) = g(t(s)) Satisfies:

drt .
aati = vjf;ﬁ,i (4120)
VIER, = Ty(t(s5))(dy) (4.121)
Then: .
day 0gdt' 08 ;..
=2 =2l = T: = T 4.122
ds “aids g STV Eli= () @122
Where used: P
j o8
' — = gT; 4.123
i =8 (4.123)
and
T =V'T; (4.124)
Then:
Exp(T) = a,(1) = exp(T) (4.125)
Ad representation
Consider the adjoint:
Ce(x) = gxg™! (4.126)
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4.6 Matrix Lie Group

Then the adjoint representation would be:
Ad(g)(T) =T, Cy(T) = exp™" o Cg 0 exp(T)

=exp'(ge’g™)

(4.127)
=gexp'(eN)g™!
=gTg™
Which means Adjoint representation amounts to conjugation. Where we used:
FoExp=ExpoT,(F) (4.128)
ad representation
ad(T)(S) = [T, S] (4.129)
denote
[ad(1))]", = £} (4.130)

47



$HE Lie algebras

The algebra is a vector space, we choose a basis 7; of Lie algebra g.

Then, we introduce the structure constants

[T, 7] = £, Tx (5.1)
For which, we introduce the conventions:
[A,B]" = [B', AT] (5.2)
If Tl.T = +T; (T; is hermitean or anti-Hermitean), it can be deduced that:
()t =-rh (5.3)
which means the structure constant is purely imaginary, for this, we usually denote:
[T, 7)) = ifi Ty (5.4)

E X 5.1 (Representation of Lie algebra) A representation of Lie algebra is a Lie algebra homo-
morphism D from g to a Lie algebra of matrices with the matrix commutator as Lie bracket. The

dimension of the representation is the dimension of the vector space.

Notice:
o A representation is reducible if there is an invariant subspace.

o Representations which are related by a similarity transformation are called equivalent.

5.1 Structure of Lie Algebras

For a Lie Algebra £, have the definition:
(i) Sub Liealgebra: A c L is called Lie sub-Algebra iff ‘A A is a linear space and [A, A| C A.
denote A < L
(i) Abelian: A < L, A is called Abelian iff: [A, A] =0
(iii) Ideal: A < L, Aisideal iff [ L, A] C A.
(iv) Derived series: The derived series {D* L} of £ is defined by: D' L = [£, L] and DL =
[DF1 £, D1 1]
(v) Solvable: £ is called solvable iff D* £ = 0 for some k.
A Lie Algebra is called:
(i) Simple (no non-trival ideals), if: AA s.t. A < L; [L, Al c A; [A, Al =0; A +0/L
(i) Semi-simple (no non-zero solvable ideals), if: AA st. A < L; [LLA] Cc A; D*A=0;
A+0

Semi-simple and nonzero abelian ideal

Semi-simple < Lhas no nonzero abelian ideal (5.5



5.2 Killing Form

=

£ has no nonzero solvable ideals < Semi-simple — £ has no nonzero abelian ideal

& AL

£ has nonzero solvable ideals < £ has nonzero abelian ideal

(5.6)

(5.7)

fA<L [LA] A, [AA] =0, A #0, then D' A = 0, which means A is non-zero solvable

ideals

s 0
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A

L has nonzero solvable ideals — L has nonzero abelian ideal

Derivative of ideal is ideal, this is because
if : [LA] c A= [L DA c DA
RABFHEME, B
(£, D' Al c D' A

T
(£, DA = [ £, [DF A, DA

= - [D" A, (DA, £]] - [DF A, (£, D A

c [DF'A, D A + [ A, D A]

c DfA

Then if A is nonzero solvable ideal, then D*~1 A is nonzero abelian ideal.

5.2 Killing Form

7E X 5.2 Killing Form The symmetric bilinear form: I' : £ x £ — C defined by:

[(T,S) = tr(ad(T)ad(S))
Denote killing form of basis(y;; is symmetry):
vij =U(T;, T)) = tr(ad(T;)ad(T}))
= iklfjlk'
In this case:
I(T,S) =T({'T;, s'T;) = t's'y;.
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5.2 Killing Form

Killing form under basis transformation Basis transformation under invertible matrix (A)
(T}, T;---) = (T1,Tr---)A = T) = T;A’,. (5.16)
Notice that, if field K of Lie algebra £ is C, A is complex invertible matrix, if field K = R, A is

real invertible matrix.
by doing this transformation, the invariant of algebra element requires transformation of coordi-
nates:
t/l [’1 ll
(T}, 13- ) |17 | = (T Ta-- A |12 | = (T T ) | 2| = 7 = (A7) 1. (5.17)

Consider the transformation of structure constant:

[77,T]] = [TaA%, TpA"]

_ B
_ B 1 a—1\k )
= A%A J.faﬁka(A "

fy = A AT g
Killing Form is invariant under basis transformation is
[(T,S)=Tr (ad(T)ad(S))
=" Tr (ad(Ti')ad(S})) (5.19)

i et mopr 1
=rs il fjm‘

Using basis transformation for structure constant and coefficients:

1k _ B a-1\k Y
sk =AvAl AT

: (5.20)
" = (A‘l)"jtf.
By insertion:
D(T.S) =t"s" AT AR A< A% (A7) (AT £ £
— tasb(A—l)ia(A—l)ijol{A/jAejA/lm(A—l %'(A_l)lsza?'fef
= 15252650000 fo i fl (5.21)
= 15 fot fo
=1's'T(T;, T;).
In all,
(T, S) = t"s" Tr (ad(Tl.’)ad(S;-)) = AT (T, T)). (5.22)

Killing Form and Lie-Algebra Structure
o killing Form I' is called non-degenerate iff V7' € £ I'(T, S) = 0 implies S = 0.

o killing Form I" is called non-degenerate iff matrix y;;is invertible.

A Lie Algebra £ is semi-simple iff I is non-degenerate
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5.2 Killing Form

&If I is non-degenerate, Consider Lie Algebra £ has an abelian ideal A .(4 “H nonzero abelian
ideal % 1 T f /& semi-simple) Consider basis:(7,, T, ), T, is basis of A, T, the basis of the remainder.
Consider VT € L, VS € A.

ad(T) o ad(S)(To) = [T, [S,T,]] = [T,0] =0

(5.23)
ad(T) o ad(S)(To) = [T, [S.To]] € A
For a matrix of ad(T) o ad(S)
0
ad(T)oad(S)=| ' (5.24)
0, O3
For this, 01 =0,, 03 = 04 ¢
Killing Form:
I'(T,S)=tr(ad(T)ad(S)) =0 (5.25)

Since I is non-degenerate. Then, S = 0, A = 0, which means £ is semi-simple.
= ...
OJ

If G is compact, then the Killing form I" on £(G)

is negative semi-definite...

Jacobi identity for structure constants Consider the relation:

[T T3], Te] + [[T7. Te]. T + [[Te. ;1. 75] = O, (5.26)
As for:
7. 771 = £,'Th (5.27)
By insertion:
fi R+ f f" + il 1) =0 (5.28)

Totally anti-symmetric structure constant introduce the structure constants

fik =vaty = £ =" fiu (5.29)
Insert the difinition of vy, and use the Jacobi indentity for structure constants talked before, we find that
fisk = tr(fififi) + tr(fifif) (5.30)

for the tilde term:
M =rt (5.31)

Cyclicity of the trace shows that the structure constants f;;; are unchanged under cycle permutation,

Consider the anti-symmetric for the first two term. We Conclude that f;; is totally anti-symmetric.
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5.2 Killing Form

Quadratic Casimir If the algebra £ is semi-simple(y is invertible), we define the quadratic Casimir
operator:

c =yUTIT]. (5.32)
y"/ is inverse of ;. T! is representation of T; in dim(r) X dim(r) matrix space.

The Casimir operator satisfies VI € £ [C"),T] =0

C, 1" =y [T“)T“) T(’)]
j ol
— (r) (1) () (r) o (r) ()
—y”(T, L -, )
i (T(r) [T(r) T(r)] n [T(r) T(r)] T(r))
’y J s L i >4y j
(10T 1)
(5.33)
Yij 1s symmetric, so does its inverse

= yii ( FTOTY 4 angr)T.(r))

_ yijfjlm (Tl.(r)T,f[) + Trglr)Ti(r))

_ ,yij),mnfjln (Tl.(r)Tn(f) + T’;r)n(r))
Noticed, f};, is anti-symmetric of j,n while others are symmetric, Then:

[C,7"1=0 (5.34)

By using Shur’s Lemma, if the Lie Algebra is irreduciable, Then

C") = C(r)Lgim(ryxdim(r) (5.35)

Physics Convention Transformation of basis in Lie algebra, leads to transformation of Killing form
of basis:
¥i; = ASALAS AL (AT (AT L
= ATSnoN A f i f
= ASAS Sl (5.36)
= ATYaeAS,
Y =ATyA
Take Lie algebra Semi-simple, and compact, from 5.1 and 5.2. Killing form of basis is invertible
and negative definite.
Physics conventions requires:
Yi; = —=6ij. (5.37)
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5.3 Cartan-Weyl basis

Under this convention, noticed that

fi =" fiik = =fiji» fijx is antisymmetric. (5.38)

Which means f; jl is totally anti-symmetric.

Index Define M matrix (the basis is taken under the convention mentioned above):
My =i (T0T,7). (5.39)

it commutes all element in ad(L).

(170, m1) = (1) o (1010) = o (1777) (1149)
Jt ! ’
— fijltr (T(r)T(V)) _ f ktr (T(r)Tl(r))

T kT](F)T(V))

jk Ik

tr lT(”)T(”)_l_ﬁ T(”)T("))
r lT(r)T(r) fl T(")T(r)) (5.40)

= (s
(5
(5
tr( 70 szTmT](r))
(1
(

tr T(”) T(r) T(”) [T(”),T(”)]T](V))

=tr T(r)T(r)T(r) T(r)T(")T(r) Tl(r)Tk(r)T](r) _ Tk(r)Tl(r)T](r))

Shur’s Lemma proves:
M =1tr (T(’)T(’)) —c(r)6i;. (5.41)

c(r) is called index of representation.

Relation between index and Casimier Under the convention mentioned above:

tr (C(r)) = dim(r)C") =tr (7‘7Ti(r)T}r)) = Z tr (Tl.(r)Tl.(r)) = c(r)dim(ad), (5.42)
dim(r)
c(r) = dim(ad) (5.43)

5.3 Cartan-Weyl basis

FE X 5.3 (Cartan Algebra) A maximal, diagonalisable Abelian subalgebra H C £ is called a Cartan
subalgebra. The dimension of H is called the rank of £ denoted by rk(£) = dim(H). The lie algebra

here is complex algebra.
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5.3 Cartan-Weyl basis

Consider two commute matrices A and
B.
(a) We can always decompose the eigen space with eigen value a of operator A into direct sum of
eigen space of operator B.

(b) We can find the common eigen space of operators A and B.

AB|a) = BA|a) = a(B|a)) (5.44)

Which means B|a) € subspace of eigen value «

(i) If subspace of eigen value « is non degenerate:
Bla) = Bla) (5.45)
(ii) If subspace of eigen value « is degenerate:
Blay) = Ciilay) + Cialaa) - -
Blap) = Coplay) + Cxlaz) - - - (5.46)

we can decompose the subspace spaned by |a1), |@3) - - - into eigenspace of operator B. by studying
the eigen value of matrix C7.

This means, (a) We can always decompose the eigen space with eigen value a of operator A into direct
sum of eigen space of operator B. (b) We can find the common eigen space of operators A and B.

O

Cartan Decomposition We can study the simultaneous eigenvectors 7 € L(G) Satisfies the equa-
tion:
ad(H)(T) = a(H)T. (5.47)

For which a(H) depends on elements in H linearly. @ € H’, where H’ is the dual space of H’.
Denote mutual eigen-space L, C L as the eigen space of root @. The Lie Algebra can be written

as:

L=He EBLQ (5.48)

This is called the Cartan Decomposition. Sometimes, we write: H = L
The dimension of H is called the rank of L, rk(L) = dim(H).

Root A non-zero linear functional @ € H’ is called a root of the Lie Algebra L if there is a non-zero
T € L such that ad(H)(T) = a(H)T. The set A = {a@ € H’|a is aroot} is called roots, the lattice

generated by roots are called root lattice Ag

Structure of Cartan decomposition
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5.3 Cartan-Weyl basis

1-The Cartan decomposition is consistent with the commutator if7 € £, & S € Lz. =

[T, 5] € Losp

[H,T] =a(H)T [H,S]=p(H)S
Then:
|H,[T,S]| =|T.[H,S]] - S, [H.T]]
=BH)[T,S] - a(H)[S,T] = (a(H) + B(H))[T, 5]

Sometimes, written as:

[ Lo Lg]l € Losp

2-Relation between cartan decomposition and killing form
TeLly;,SeLs; a+B#0=T(T,S)=tr(ad(T)oad(S)) =0 (LaLlLp)
HETFR:
TeL, Sely UelL,
HEAERT U:
ad(T) 0 ad(S)(U) = [T, [S,U1] € Lopry ([LasLp] C Lasp)
This means the ad(T) o ad(S) has vanishing diagonal elements.

I(T,S) = tr(ad(T) 0 ad(S)) =0 L,1Lz fora+pB+#0

3-T'4yx4 is non-degenerate.
PHeH ; H+0st.VHe HT(H,H) =0

And
Yae H', 3H, € H s.t. T(H,H,) = a(H)

Define:
(a,B) =T'(Hqy, Hp)

L is semi-simple = Killing form is non degenerate. on £ X L.
3H € H,s.t. VH € H,T'(H,H) = 0. We need to show that H = 0.
VSe L
S:FI+ZSQ S,€ L, HeH
a€A

if3dHe H,st. VHe H,T'(H,H) =0
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5.3 Cartan-Weyl basis

Noticed that:
VS, T'(H,S,)=0

Then:

VSo € Ly VHEH > T(H.S,)+T(H.H)=0

Which means:
vSe L T(H,S)=0
From theorem about relation of semi-simple and non-degenerate 5.1.
H=0
Which means ['¢;«¢/ is non-degenerate.

To find an H, € H,
F(Ha HLK) = Q’(H) = F(Hl"HCl) = a(Hl)

Consider:
H,=HL,H,

This relation means:
yijH{ = a(H;)

if v matrix is invertible, the exact H, can be recovered from this equation.

0

4- If A Contains «, it contains —a

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

Assume that —« ¢ A, Then £, L LgVp € A. Aswell as L, L H So L, L L. however, this is

contradiction since I" is non-degenerate.
0

5-ForT € L,,S € L_,.wehave [T,S] =I'(T,S)H,. One can normalise as: I'(7,S) = 1

LetHe H,Te L,,Se L_,
I'(H,[T,S]) =T([H,T],S) = a(H)I'(T,S)

- ['(H, H,)[(T,S) = [(H,T(T, S)H,)

(5.67)

with non-degeneracy of I', [T,S] = I'(T,S)H, . There mustbe aT € L, and § € L_,. with
I'(T,S) # 0. (I' is non-degenerate in £, & L_,). by suitable normalising T, S . I'(7, S) = 1

O

6-dim(L,) =1forall@ € A
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5.3 Cartan-Weyl basis

7- Let a € A, from {ka|k € Z}, only a and —« are roots

We proof these two statement together.
Choose: T € L,,S € L_,, H, € H ,such that [T, S] = H,,.
Define space:

V=CS+CHy+ Y Lia (5.68)
k=1

Which is invariant under ad(H). We proof this two statement by computin trace of ad(H, )|y in two
different ways.
(1)

tr(ad(Hy)lv) = tr(ad([T, S])lv) = tr([ad(T),ad(S)]ly) =0 (5.69)

(2) evaluating it on a basis of V.
ad(Hg)(S) = [Ha, S| = —a(Hy)S = -T'(Ho, He)S = —(a, @)S
ad(Ho)(Ho) = [Ho, Ho] =0

(5.70)
ad(Hy)(U) = [Hy, U] = ka(Hy)U = k(a,a)U
~—_—————
U is basis of Lo
Which implies:
tr(ad(Hy)lv) = (a, a)( -1+ Z kdim(.[:ka)) (5.71)
k>1
Which means dim(Ly,) = 1 for k = 1, others: dim(Ly,) =0
O
8-For H,H € H,wehave I'(H,H) =" ., a(H)a(H)
Start with: T € L,
ad(H) o ad(H)(T) = [H,[H,T]| = a(H)a(H)(T) (5.72)
In this case:
T(H,H) = tr(ad(H) o ad(H)) = _a(H)a(H) (5.73)
a€A

9- A contains a basis of H’ (roots span root space).

Assuming Span(A) # H’. choose basis of Span(A) as (ay, - - - @;,). Complete itto (a; - - - ay).
Introducing its dual basis: (Hy, --- Hy) of H. This means:

CZ,'(H]') = (5,’1' = CZ(HN) =0foralla € A (574)
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5.3 Cartan-Weyl basis

This means:
I'(Hy,H) =0forall H e H (5.75)

Which is contradict with non-degeneracy of I".
OJ

Cartan Weyl basis The basis would be: (H;, E,) wherei=1---r =rk(L), Ly = Span(E,), and
[(Eq,E_y) = 1

Relative to basis of Cartan, elements @ € H’ can be described by (« - - - @) where a; = a(H;)

— Killing form can be used to upper or lower the index Consider @ € H’, H, = 'H;
a; =a(H;) =T(H;,Hy) = AT (H;, H;) = Vy;j (5.76)
take inverse and denote A as upper index «

o = y’.ja/j (5.77)

— Commutation relations for the Cartan-Weyl basis
[H,H;] =0 [H;, Eq] = aiE,
NogEogip OFa+pBeA (5.78)

E, E_,] =H,=0a'H;, [E. Eg]=
| ] o Bl { 0 0#a+BeA

— Subalgebra of Cartan-Wel basis For any root @ € A, the three generators (Hy, Ey, E_y)

form a subalgebra, with commutation relation:
[Ho, Ero] = ta(Hy)Esq = t(a, @)Eyy
[Eoza E—oz] = Ha

(5.79)

Weights

— Basic of weights For a representation r : £ — End(V), we call w € H’ a weight of r if there
is a non-zero vector v € V' s.t.
r(H)(v) =w(H)v YH € H (5.80)

The eigen space of weight w denoted by V), consists of all v € V satisfies above equation. Represen-
tation vector space:
V=6e,V, (5.81)

A weight w € H’ is represented by:
(w(Hy)---w(H,)) r=rk(L) (5.82)

58



5.3 Cartan-Weyl basis

— Raising and Lowering operator

r(H)(r(Eq)v) = (r(Eo)r(H) + [r(H),r(Ea)])v

= |r(Ey)w(H) + r([H, Ea]))v

(5.83)
=|r(Ey)w(H) + r(a(H)Ea))v
= (W(H) + a(H))r(Eq)v
Shows that:
€ Viyra W+ ais aweight
r(Eq)v . . (5.84)
=0 w+ aisnota weight

il 5.1 Weights in representation differ by roots. If representation r : £ — End(V) is irreducible,
Then any two weights wi, wy of r satisfy w; — wy € Ag.

If wi —wa & AR, ®yerg Vv, +a C V is invariant under r, but it dose not contains V,,,. which is

contradict with irreducible condition of r.
O

—Weight Lattice Consider the commutation relation of (H,, Ey, E_y)
[Ho, Eio] = 2a@(Hy)Ero = (@, @)Ex+q

(5.85)
[Eoza E—oz] = H,
Eigen values of H,,w(H,) has to be “"zi)z
(w, @) 2 w(H,) € (“’2“)2 (5.86)
remember: I'(H, Hy) = a(H), (a, B) = I'(Hy, Hg) The weight lattice:
2(w,
A= w e 712D ¢ 7va e n) (5.87)
(o, @)

—Positive and negative roots Choose a direction [ € H’ in root space. Define two subset of

roots:
A, ={a € All(a) > 0}

A_ = {a € Ali(a) < 0} (5.88)
[(¢) £ a(H;) =T (H;, Hy)

Need to be careful that /(@) # O for all @ € A Since A is a finite site of roots, this is always possible.

In this case A = Ay UA_. E, with @ € A, are raising operator, E, with ... are lowering operator.

—Highest weight vector Letr : £ — End(V) be a representation. A non-zero vector v € V
is called the highest weight vector if E,(v) = 0 Va € A,. (Definition of Highest weight vector). The
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5.3 Cartan-Weyl basis

weight A of highest weight vector is called highest weight.

Properties of Cartan-Weyl decomposition For a semi-simple complex Lie Algebra £ with repre-
sentation r : L — End(V).

1- r has a highest weight vector
Choose a weight A as highest weight which means /(1) = A(H;) is a highest over all weights.
Consider
VYa e Ay (A+a)(H)) =A(H)) +a(H)) > A(H)) (5.89)

This means A + a can not be weight.
E,(v)=0 (5.90)

2- Constructirrep successive application of E,, where @ € A_ on v gives a sub-representation
of r. If r is irreducible representation, it is obtained in this way.
Define
Wi =Span{E,, - - Eq,v|a; € A_} (5.91)

W=eW, eV (5.92)

We can show that W is invariant under all generators.: - -
OJ

3- If r is an irrep, the highest weight vector is unique up to re-scaling
Suppose there are two linearly indenpendent highest weight vector, vy, v, € V,, Then v gener-
ates irrep which does not contain v,, So V is not irreducible, so dim(V,) = 1
U

Simple roots A positive (or negative) roots is called simple if it cannot be written as a sum of other

two positive (negative) roots.

(1) Anirrep r can be obtained by successively applying
lowering operators of simple roots E,

(i) The simple positive roots form a basis of H’

—Dynkin labels and Cartan Matrix Choose a basis formed by positive simple roots (@ - - - ;).

For a weight w, construct:
_2(w, @)

- (a;, a;)

(5.93)

ai
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5.3 Cartan-Weyl basis

The vector (a; - - - a,) Carateries weight w. (Dynkin label)
Dynkin labels for positive simple roots:
_ 2, a))

Ay =
Y (i a))

(5.94)

This is called Cartan Matrix.
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6.1 SU(2)

Group SU(2) SUQR) HEENH
SU(2) = {U € End(C?)|det(U) = 1, U'U =1} . 6.1)

Lie algebra su(2) %f SU(2) group {EfEICHBIMAIVRIF U = 1+ T, FBl LI G2
%t Lie algebra [ 245 514

det(I+T)=0=r(T) =0, (I+T) (I+7)=I1=T"+T=0. 62)
FHIE & kiR /2 Traceless and Anti-Hermitian. F] [ Pauli-matrix £, Hr Pauli matrix & %

01 0 —i 10 63)
o = , Op= , O3 = . )
"o *“1i o "o -1

F] A Pauli matrix FEITH su(2) 5N (e =2 levi-civita £7-5)
su(2) = Span(t; = —io;/2)r, |7, 7] = el.jk‘rk. (6.4)

Lie algebra su(2)c % su(2) algebra 475,

su(2)c = su(Q)r +isu(2)r = sl(2)c. (6.5)
I 75 Algebra S2fr BA 6 DMER. BER L2 sH(2)Ro
su(2)c = sl(2Q)r =A{T € End(C)|tr(T) =0} . (6.6)

Representation of su(2)c K[ Lie algebra 5 5L R A AT LA

su(2)c = Span(i, it)x. (6.7)
WERA su2)c NHEREETR, ICN T =r(n). &SRR
E.= %(T1 +iTy), H=iTs, r(su(2))c=Span(H, E)c. (6.8)
REG TS HIE S X 2ok &R
[H,H| =0, [H,E.]=<+E., [E.E_]= %H (6.9)

BT AR, TR ry, J € 2/2, FoRANERILHN jm), m=—j - +j,
KRR (H,Te), AFRas A i i e

H|j,m)=m|j.m)y, Telj.m)=~j(j+1)—m(m=1)|j,mz1). (6.10)

BSRTEAES: su(2) INZERIM S S 3 T 240, (HRFRFEHRAR 6.8) LUK

AT LA su(2) FoRMEER — 11, T2, Ts « T LABGIEA THLIR T /2 su(2) X 5526 2




6.2 Lorentz Group

WA EYL, MR T AR TR ] DA su(2) BN

6.2 Lorentz Group

1 0 0 0
o -1 0 o
%1 0 -1 o
00 0 -1

FEX 6.1 (Lorentz Z#4) Lorentz & # & L A:

= AL xY
X, = AJxy
ith
X, = xtxy,
Sl
AN =6
xR B| EAIF

A, g At g7F =60

B89 k3%, Lorentz 2L 3%:
{ABI A g A 7P = 6}

det(A)? = 1detA ==+l

XHEGA

{Aﬁil Alﬁ/ 8ua A/lo- = gvo-} .
O

detA = +1
H6.1:

{A“v gur Ny 870 =67

b REBAT 7 A
det(A”) det(g,q) det(A) det(g7”) = det(I) = 1

O
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(6.12)
(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)
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6.2 Lorentz Group

Lorentz BHIS 3 >4 Lorentz 28 MfE E 248 Mt r iy, Al LAE%:
A =8 +Aw’,
7% J& Lorentz AR 1 2 R 55 14
{A“VA; =6
T
(6% +Awh) (6 + Aw)) = 6%

m_,\EH%:]gj/[\/J\%:

AW‘; +AW1}D =0

THERRTF 21K R:

AwFY + Aw'P =0

WALEYL Aw FEFEF AT (4x4 - 4)/2 = 6 iz A

x 71 EIE5 Lorentz T 1L}
Awl0 = AWl = —AB
2 & Covariant vector x [1]25 4,
Awly=-AB AW’ =-AB

2

() =x" - ABx;

() = —ABx" + x!

() =x*

) =x>

2 J5 3 infinitesimal transformation #Jit5 finite transformation. % & f%:

0 -1 00 1 000

I = -1 0 00 112 _ 1 00 ) =1
0 0 0O 0000
0 0 00 0000

T2 XM Lorentz 2535 A
A, =60 + MBI

1 AB 5 %, N JE— /M LB KA. LA EFR & HOT Lorentz 252 J5, % FE A1

N
lim (]I+ Kzl) _ v
N—>+oc0 N
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(6.25)

(6.26)

(6.27)

(6.28)

(6.29)
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(6.31)
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6.2 Lorentz Group

N2 LA

e"!' = cosh(wl) + sinh(wl})

= l(]l+ (wh)” + (wh)* +- ) + (wh + (wh)* )]

2! 4! 3! 6.33
[( (wh)*  (wh)? ) ( (wly) )] (39
=|{I+ + + |+ Wl +
2! 4! 3!
=1 - (I1)% + cosh(w)(1;)? + sinh(w) 1,
BRI, X T Covariant vector, Ap#an] DL 4
X0 coshw —sinhw 0 Of [x°
X' _|-sinhw coshw 0 0 x! 6.3
2|0 0 1 0flx? '
X" 0 0 0 1]
R T B RUEGE R LAAHEFIRIE R . %R 0 = 0 I, JE AR R A4
b 1 1
coshw(x! = x"tanhw) =0 % = % = % =tanhw = 8 (6.35)
EF]5¢ & cosh?>w — sinh®w = 1, coshw = coshw = ! =—L_Hf4:
%FE J?é? v v W \/coshzw—sinhzw \/l—tanhzw \/1—ﬁ2 BA
o s )
xlO 5 m 00 xO
xll __B 1 00 xl
Ll = 1-p2 1-p2 ) (6.36)
X 0 0 1 o]|*
/3 3
X 0 0 0o 1|

5tz BNERE  (CLbRRLE 2 HERS) LU
Aw?l = —Aw'2 = Ap  others =0 (6.37)
% & Covariant vector x 25
Aw? =-Ap  Awl, = Ag (6.38)
Mt
()0 = x°
) =x + Apx?
(x)? = —Apx' +x2

(X,)3 — X3

(6.39)
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6.3 Lorentz # LieAlgebra & =

2k, HH infinitesmial Lorentz 28 fa#e)ig finite Lorentz 284, 41658 L AE % g

00 00 00 0 0
fo g —01 (1) 8 (Te)” = 3 _01 _01 8 (Ie)" = ~1s (6.40)
00 00 00 0 0
IXRE, IXFPMU/IN Lorentz 2546 1] LS H:
A=T+Agls (6.41)
&
Jim (14 Z1gN = o (6.42)

e"!6 = cosh(wls) + sinh(wle)

_ (JI+ (wlg)? . (wlg)* +) . (w16+ (wlg)? +)
2! 4! 3!

2 L (6.43)
:H+(I6)2+(_I[+T_I+”.)(16)2+(W_§+”.)(16)
=1+ (Is)* — cos(w)(Is)? + sin(w) I
HARKE, X7F Covariant vector, T HY 25 #a 2
X0 1 0 0 Of([x°
x'! 3 0 cosw sinw Of[x! (6.44)
X2 - 0 —sinw cosw O] |x2 '
X7 0 0 0 0f|x
YT AR REE z Hhit D
6.3 Lorentz & LieAlgebra &7~
Lorentz A7 Lie Algebra Lorentz 25355412
AP e AS) = Naa. (6.45)
ZWE EN bR, BERAEAE N
ATnA = 1. (6.46)

Hrpn 2B IHHERE . 14 Lorentz AR5 FEAE A AR T IT R IT A = 1+ T BRI T 2 5%
7
ATpA =7 = (]I+TT)77(JI+T) —n=>Ty+yT=0=T = —T7y. (6.47)
T /& Lorentz Group HY Lie algebra /&
L(L) ={T € End(RY|T = -nT"n}. (6.48)
WTEREMAEE . TR T FATUE 0, Ty =T, To = Too. thit/2 Antisymmetry
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6.3 Lorentz # LieAlgebra % 7

in space-space entries, Symmetry in space-time entries. FTUIMAI4EE & 1 +2+3 = 6,

dim (L(L)) = 6 (6.49)
Lorentz F£HY Lie algebra 7] UL P AP 5L S BT
L(L) =Span(oyy)r = Span(J;, Kj)g. (6.50)
MRS IIE IS N
(O'uv)pg = nﬁnvo' - 77/10'775- (6.51)
[FEREAHIERT ) 2 20, B0l X 2 ok &
[T Tys] = Nas0By + NayTsp + NBs0Tya + Mgy Tas- (6.52)
F— MRS H .
Ji = ~ 5 €k T ks K; = -0y (6.53)
BRI Y A2
0O -1 0O
- 0 0 . -1 0 0 O
i = ( ) lll 1= (654)
0 T; 0O 0 0O
0O 0 0O
HA T 2 SOB) FF AT, BAARRAEMIEASE B
0O 0 O 00 -1 0 10
Ih=|10 0 1|, T»=]0 0 O, Tz=|-1 0 Of. (6.55)
0 -1 0 1 0 O 0O 0O
%5 —Fh Lorentz Lie Algebra A il JUHE P43 2 %] 75 % &
[JiJj) = -} . (KK =€/ [1.K)] =€ Kq. (6.56)

IR, MR ESHINR CEAR A, 28— Boost), AH4 25 fir A YA il T A P41
Felh-1o Wi, XHRER (BoR MR EXAY)

i)=&/ T (KKl =-6/Ji. 1K) =€/Ke. (6.57)
HESUH > bug 2 AE R 157 Sakurai 5| WA SRR MBS 19 2R MOTHEAFIS K5 5h
MO B ORiFAEARbR RPHesl) 2 B H A . (H2AE Lorentz AR5, — /B8 &
2 A MRS S AAER R XS R A AR bR e i (B RRAEIVLRD o 7E75 & Lorentz R,
BIFRESHIREN S —. TRZN TERESM A AL ESW T Lorentz 2 HA I HE
fift, WOEHER AR T

Group homomorphism SL(2,C) — L SL(2,C) FEENH
SL(2,C) = {M € End((C)*)|det(M) = 1}. (6.58)
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Lorentz F 5 3K
L={A e GLRY|VX e R*, (AX)'n(AX) = X"nX}. (6.59)
ESL 4 AL 23 ]
S =Span (o, = (I0y)) = {S € End(C*)|S = S"}. (6.60)
AT DI PUAEZe P 25 (B 4 X 1 AR — 0 Bk,

7T: R*eS, T(X)=X'o,= X0 X7 X! -ix? . (6.61)
x'+ix? x°-Xx3
A I P2
XT'nX = —det (T (X)) . (6.62)
WAL SR AS U Ry : SL(2,C) — GL(RY)
Ry(M)(X) =7"! (MT(X)MT) & o Ry (ML XY = M(XF o, )M, (6.63)

SRS (4 1552 Lorentz group F1if) 6.2
(Ry(M)YX) 1 (Ry(M)(X)) = —det(T(RV(M)(X))) - —det(M’r(X)M*) - —det(T(X))

= X'nX.
(6.64)
7% Lorentz Group HJE X Ry(M) € L.
KIL Ker {Ry} = {L}, FHAZZS HE 28 E A LRI Lorentz group, TEARIEMESZE
H
Ll =5L(2,C)/Z». (6.65)

Lie algebra Hom  SL(2,C) fJZEREAEMOITE (SUQR) B Ak

g (o

Ji=-iz, Ki= 7 (6.66)
W RN 5526 R
i Jj] = €T (K Kjl = -6/ Tk, [Ji,Kj] = €Ki (6.67)
XA 54 5 ZA Lorentz BEAACKO 5 6 R —FF, ZACBIRIAE K
Ji—J, KK (6.68)

Lorentz Lie alg Rep tUAH4T25 & s1(2,C) 19588, 2042 s1(2,C) IR H
JE = % (J; 2 iK;) . (6.69)
AR RS R X S R 3R
V5Tl =6/ U5 J71=0= 51(2,C) ~ su(2) @ su(2). (6.70)

FrVERIZFR AT LA (v, J-) € Z/2 X 2/2 REOR -
FERAE s1(2,C) WIS, FIN T HERL, 1X—DARHarEE, [AO4 Lie algebra AYEUMASK
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FIZE S o XD FAG ROZIXA AR . Q0REE] 7B G su(2) HIERR, AR A X
(6.69) [ 5 HY s1(2) BUFERIEL R . 1] DALE B X Se BL IR 1 2 s1(2) PR 526 R
BETCR, Kt s12,C) lFoR, FIH s1(2, C) F7R AN Exp ESE] SL(2, C) MI#E
FKoRo
WA su(2) LR HANCH re LIS oo TREEPIA su(2) Fon BRI IMNEE
gy () = re(UD) X Taj sty 7(jo) (7)) = Iojrar X7 (J7). (6.71)
AR BRI H B su(2) Fon ] LA E] s1(2, C) FonmIiiE Jiikg Ot 2482 BAIE? —A
NEAAAIZTR)
P () =re(JF) xTojq1 + j X r-(J7),
rioj ) (Ki) = =i (re(JF) X Ij_s1 = Loj Xr-(J7)) -
AT LB BRI IER L2 s1(2,C) X 5K R MBINERTREMZE (27, + 1D (2j-+1) 25[A]
HI R BN . RV, = CED@D IR r(,y0 ¢ sU(2,C) = End (V(j,.)
FIH Lie algebra 3o/R{S2IHEFR . FFFRINHIML ¢ R /2
M =exp (1'J; + 5'K;) = R(M) = exp ('r(J;) + 5'7(K)) . (6.73)

HE, WREEG AR R 5 Ry BINEREFNTAEBITINERR ri(T), r(T) « FENFR
I EFIZIR Rig2(g) = Ri(8) ® Ra(g) M TAERUTIN ELREIR riga(T) = ri(T) L +11 @ra(T) -
FEFRR I EAIFERR Rie2(g) = R1(8) @ Ra(g) M TAHEMITH EZETR riex(T) =ri(T) @ r(T) -

(6.72)

(0,0) Scalar RSP 2AREL su(2) R ES S —4EL7R. MR 1%, Fsu2) =0
TS T EAEEN 0o I, HA—14510,0), FfHE J:10,0) = J,]0,0) = J.]0,0) =0,
EIXA A, s1(2,C) 1Y (0,0) IR /2

re(JH) =0, r_(J7)=0. (6.74)
Mt 0 %R
r(Ji) =r(K;) = 0. (6.75)
Lie fCEUHY 0 Fn55 41T Lie BERUESRZR
M =exp (t'J; +s'K;) — R(M) = 1. (6.76)

(1/2,0) Left hand Weyl spinor X T 25—~ su(2) &£/~ j=1/2, B _-1F/rj =0,

re(JF) = —icy2, r_(J7) =0. 6.77)
WL s1(2, C) FRIHIE T (6.72)
ra2,0 (i) = —ioi[2,  rap0)(K) = —0i/2. (6.78)
WL Lie algebra FYER7 R SRR
RL(M) = R(1/20)(M) = exp B(—s" - it")af] : (6.79)
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N fi Left-handed weyl spinor representation, 7R 25 (] V(1/2,0) H K & M Left-handed
Weyl spinors.

(0,1/2) Right hand Weyl spinor X T 28—~ su(2) £/~ j =0, B 1FE /RN j=1/2,

r(J5) =0, r_(J7) = —icy/2. (6.80)
i s1(2, C) RIS T5 7% (6.72)
ro1/2) (i) = —ioi/2,  ro1/2)(Ki) = 0i/2. (6.81)
i Lie algebra FYER7R S HFRY 7R
RRr(M) = R(0,1/2)(M) = exp [l(si - iti)ffi] : (6.82)

N f Right-handed weyl spinor representation, 7~ Z3[f] Vo.1/2) I i 1 i Right-handed
Weyl spinors.

TRt SL(2,C) M H &R,

(1/2,1/2) Vector AJHIERA )44 Lie [REGE R E N
r(J) =Ji, r(K) =K. (6.83)

KA ARS8 & (Lorentz group)
Ry(M) =exp [ +5'K;] . (6.84)

(1/2,0) ® (0,1/2) Dirac spinor Z=fUEFKIRE K

() = r1/2,0(Ji) 0 ) F(K)) = r1/2,0)(K;) 0 ’ (6.85)
0 ro,1/2)(J:) 0 r,1/2)(K;)
iEINAE S NG )
RUM) 0
Rp(M) = } 6.86
p(M) ( 0 RR(M)) (6.86)

Parity & Lorentz 28 e rf 43 (8] i 51 A8 # Parity P = diag(1,-1,-1,-1) . EAEH 1 Lorentz
AR A2 T _EA B
PP =J;, PKP=-K. (6.87)

YisE EROARRE: Se s R, s, BSOS T E RS et . 5 Boost,
23] S S I [] Boost
JE R i SUR SR RO TN R, B A Tl R IR SR e R E RS R R
TR E R, Boost A i TCIHE R AN 56
XiF Lorentz Group [3%7R, HRERRITEMEA LN
R(P)r(JOR(P) =r(J)), R(P)r(K)R(P) = -r(Ky). (6.88)
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Left-handed spinor rep F] Right-handed Spinor rep [ r(J) i[5, r(K) fHZEM5, LA
RL(P)RL(MRL(P) = Rr(A),  Rr(P)RL(A)RR(P) = RL(A) (6.89)

5 /& Parity exchange Left and Right handed Weyl Spinor rep.
Bt Lorentz A4frffiy a3 i) Se bt AL 8 Parity 1 I/ Lorentz A4 ()4 il ot _EATERT:

PIP =Ji PRP=-Ri= PI*P=JF. (6.90)
fEZTRH
R(P)r(JH)R(P) =r(J)). (6.91)
EER
(o) (J) = re(U7) X Ipj_gy + Doje1 X7 (J7), (6.92)
r((jﬁjf))(Ki) =-—i (”+(J,~+) X 1[2j_+1 - JI2j++1 X r—(-]i_)) .
IR 1, 2 238, Fontnl LS (7> N8R 2)
2(jnjo) (J1) = Toj_gr X e () + r-(J7) X Ij 1, (6.93)
’”2(j+,j7)(Ki) =—i (I[Zj_+l X r+(~],‘+) - r—(']i_) X r+(‘]i+)) :

WA EEN s1(2) 5N s1(2) = su(2) ® su(2) 2A MM, FOVIRERX S, LHEES)
568 PP B R RO 2 rao, ) (Ki) = 11,0 (K - (RIS A 23 ) UM B > 23 ) HH s
HIZoN, BRI RANZGEHEER, HRXEE T M),

512 Parity XJ5&RHIAEH . #28 Parity X AR Lie algebra {587~

PG (D) =re(J) xoj 1 + hj X r—(J7) = ro(J) xjq1 + Dje1 X r-(J])

rioj (K = =i (re(J7) X Ij_s1 —Loja X r—(J7)) = =i (Lj,e1 Xr-(J7) = re(JF) X Lj_41)

(6.94)
ZRERI WA TR B A n 2 I e, 30
R(P)rj,.jy JDR(P) =1, (i) = rag_ o (i) (6.95)

R(P)r(j..j) (KD)R(P) = —r(j,.j)(Ki) = rag_, ) (Ki)
Kl , m]CARfE A Parity &?@T (Jsr J=) = (= J4)-

Dual of spinor representations 73 %%l Left-handed Spinor rep #] Right-handed Spinor rep 47 7|

g
Ry (M) = R(1/2,0) (M) = exp [%(—.S" - ljf")Ui] , (6.96)
Rr(M) = R(,1/2(M) = exp (s — it o] .

Left-handed rep HY X} dual &
(RL(M)-I)T — exp B(sf - iti)O'[] = Re(M). (6.97)
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Complex conjugate of spinor rep Pauli 45 [ 'E i
{0'20',-0'2_1 = -0 (6.98)

1

%] Left-handed Spinor rep B Complex Conjugate
1 . .
R (M) =exp [5(—.?’ + it’)cr,.*] = 07 exp
EMT (05 =—0)

1 . .
E(SZ - itl)O','] 0'2_1 = 0 Rr(M)o. (6.99)

Rr(M)* = 0oR. (M) 0. (6.100)

Spinor rep and Lorentz trans 1] [ spinor rep 143 H,—> Lorentz trans. ££3Rk SL(2,C) FEA
Lorentz f[A]AC R}, 153 1= (6.63)
Ry(M)(X)=T"! (MT(X)MT) & o, Ry(M)4 X" = M(X o )M (6.101)
HEEF (0,1/2) /2 SL(2,C) IWHHFIR, ATLLESE/ M 505 Rr(M). XS Lorentz #£70
5N A, = Rv(MY,,. 20 X, £ 5N
o\, = Rp(M)o, Rr(M)T,
oAy = Rr(M)AJ oy Rr(M)', (6.102)
Re(M)~ o, (RR(M)*)_1 = Ao,
2% &% Dual of spinor rep FJ/: it
RL(M) ooRL(M) = AT (6.103)
A%t =0 Complex conjugate, F| F Fij #2211 Complex conjugate of spinor rep HY M 5t
(RL(M)) o (RL(M))* = Aoy,
(2Rr(M) ) 7o Rr(M) oy = A o),
T2 Rr(M) oy 00 Rr (M) oy = Ao, (6.104)
RR(M)JFU'ZO';(DRR(M) = o, 0,0,
Rr(M) G, Rr(M) = A} 5.
Hrfr, X
Oy = 0'20':20'2 = (I, -0y). (6.105)

Lorentz trans of Left and Right spinor :Z #1718, 1 Lorentz A48 I R EUE/E N iR Ar #
T, S=¢
S=[d**L(pa(x),0
Jd*xL(pa(x),0"¢a(x)) (6.106)
§' = [d* L (¢,(x), "¢, 0 (x))
Hrfr, 79 2 AR R sk
¢, (x") = R(A) Loy, (x), = 0, (x') = A R(A) 20" ¢y (x). (6.107)

HrPHY R J2 Lorentz HEHIZEIR
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1E Lorentz #£[1] Spinrep ~, @R AFPRY A&, X7 Left, Right £/~ , %5005 N
XL, XRo AL E N
XLR = Rpr(M)xLR. (6.108)

Conjugation of Weyl Spinonr & ¥ Left-hand Weyl Spinor [J Conjugation A

Xi =02x]- (6.109)
Left-handed Spinor [ Conjugation 4% fiff Right-handed Weyl Spinor representation 454, EL (A1
Xp > 02 (RL(M)x1)" = R (M) x}. (6.110)

¥ 5% Complex Conjugate of spinor rep FYHE it
{RL(M)" = 2R (M) 0. ©.111)
T /& Left-handed Spinor [ Conjugation HY Lorentz 4%
Xi — Rr(M)oox; = Rr(M) 7. (6.112)
IRy, & X Right-handed Weyl Spinor HY Conjugation “A/
X5 = 02Xk (6.113)
Right-hand Spinor Conjugation & Left-handed Spinor.
Xg P O2RR(M) xp =02 (2R (M)02) X%
=R (M)ooxp = RL(M) xg.

(6.114)

Weyl mass term 2% JEP > Left-handed Weyl spinor rep /R 25 [ PRI KT xyo, Y. AR T
FHASERATEN, W1 Left-handed Weyl spinor rep /R ik MR (1/2,0) ® (1/2,0) =
(0,0) ® (1,0). th@ikinrn=mf—Ef 1 —4ENEF23 .
FJi&—> Lorentz ANAEHY 5 o
Xiowp. (6.115)
AT AR IE B S0 & A AR Y o
X1 = (RL(M)xp)" aRL(M)1 = X[ RL(M) 2R (M) L. (6.116)
7 &% Dual of spinor rep [{J{£ i UL & Complex Conjugate of spinor rep [t it
(RL(M)™)" = Re(M) = RL(M) = (Re(M)")™, .
Rr(M)" = aRL(M)oy = Re(M)" = oaRL (M) .
T2
Xy o X RLU(M) oaR (M1, = x[ ooy, (6.118)
N5 2% B 2 B TETHE 2 ) Conjugate of Left-hand Spinor, iX/{> Lorentz /45 Hi &
(x5) e, (6.119)
[FIHE, kR (0,1/2) ®(0,1/2) = (0,0) @ (0, 1) 2 [HH A —4EA 725 H]. T2 n] LA
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FJi&—1> Lorentz /NAZ [ &

XROWR. (6.120)

IR FE 2 Hi T HE 2 AY Conjugate of Right-hand Spinor, iX-~ Lorentz /4% &2
(x5) wr. (6.121)

Lorentz vector #I| ] Spinor rep #4iti HiHY Lorentz trans

RR(M)T&QRR(M) = Ao}/&v’

(6.122)
R (M) oy RL(M) = A0,
KL
XhOuUr,  XiowL, (6.123)
4% 18 Lorentz transformation 254V, [19 o
S—MSH L M Lorentz Zeada fE M it H &
Wy + Wy = 0. (6.124)

TRy

0 wor W wWe3
-wo; 0 w2 W13

Wy = . (6.125)
—wp —wi2 0 w3

w3 —wi3 —wy3 0

4T 6 M=%, “Eik Lorentz 45t
0 wor wep we

wor 0 —wpp —wi3

Wt = . (6.126)
wp w2 0 —w
w3 W13 W3 0
X H SR A2 BT EAF RIS 05 [ IS Lorentz 424,
0100
i (o 0) ~ 1000
;= . Kili=1 = : (6.127)
0 T; 0 0 0O
00 0O
HA T /2 SOB) Hr AT, HARPAEREE S (T3 )
00 O 0 0 1 0 -1 0
=10 0 -1|, T»=]10 O O, Tz=|1 O Of. (6.128)
01 O -1 0 O 0
FESBCRIRE TN R R
ot =T+ 5'K;. (6.129)
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KEEIL, BESEI R R

t! = w73, ? = —w13, £ = w12, st = wo; -
LESING)

W'y =wJi — wishh + w3 + Z wo; K,

1

| - 1 -
=§€”kwijfk + Z 3 (woi — wio) Ki.

H TR o SHERSEL SN

A=1+ a)/“,f“".

Hrp
ooy, mole oo lg
2 4 2 19 2 i
XF(1/2,0) Fox,
ST - 1 .. -
r() = 5elr () = sel (=D /2 = —%ellkcrk,
r(J)Y = l;’(I€)~ = l(—0-./2) = _10-.
= 2 I — 2 1 — 4 I
(J)© 1 &) 1( ) 1
d =5 \8)i==3{=0;/2) = ~0;.
2 2 4
T (0,1/2) R,
. 1 .. _ 1 .. -
r()7 = 5elr ()= sel (=D /2 = —%eleO'k,
P = 2r(R); = % (0/2) = 207
= 2 r 2 1 - 4 is

. | 1 1
i0
r()° = =51 (R)i = =5(03/2) = =50
Left/Right Spinor rep Generator A | Ff14)H B A 2 EFHAF S
Wyy -
RL(M) =T —i—=r(D"",
Wy -
Rr(M) =1 i—=rg())}"",
o1
ro(J)Y = Efl]ko'k,
-0 i o i
re()” = _Eo'i,rL(J)lo = 50
o1
re(l)! = S,
e .
rr(N)% = EO'i,FR(J)IO =—=0;.

T E) Pauli HiEAPE R

[0, 0] = 2i€® 0.
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(6.131)

(6.132)

(6.133)

(6.134)

(6.135)

(6.136)
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AL E TR S

ro()Y = _411 [O'i’o'j] )

~ 0 ] o i
ro(N)% = _Eo'i,rL(J)lo = 50

. i (6.138)
re(J)"” = 4 [O't,O'j] >
PR | o i
re())” = Eo'i’rR(J)lO =50
*}F Dirac Spinor, ‘& minimal 2545 A
Rp=1- %wer(J)W. (6.139)
A TG EA v 24 &2 Left-spinor rep fi1 Right-spinor rep 4= il G ELFIE =
}"D(J)l] — ( 4 [O- 0’]] i ) (6.140)
0 3 oi. o]
) Lo 0
o =27 T (6.141)
0 %O’,‘
TE X
0
P = ( U“) (6.142)
5y 0
R

e, I L A ) e

0 I

0 i1 —
[y’)/]_(l[o

TR AT AT 2519 Dirac Rep A2 poTAfFFS

4 ! v
()" = 7 7]

o oL )

g; 0
-2) ( ) . (6.144)

OO','

(6.145)

R Lorentz 4846, fEXFhZ40715 T, Lorentz AL A LI

@ 04 ! V@
Aﬁzéﬂ—iwﬂv(j'u B’
(T = (876", — g6")).
B R] LSS IR

a _ ca o
Aﬁ—55+wﬁ.

(6.146)

(6.147)

Levi-civita symbol invariant 7t Left-handed spinor rep H1, AW Mg Levi-civita £75 €45

f& Lorentz /N8 (A TER...)

en=-1 e =1 €%=1, &' =-1. (6.148)
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4EPRAY Levi-Civita #5552 N RSV (BEAF 81 E S0
€€’ =65, ey = 6. (6.149)
A LA Levi-civita fF5-THFEREPR N2 BIARE T IR AR R 2 B rh iy R, B E L E
TEARAY IR o
= ey, (6.150)
H Levi-civita fF-5 JH &R 2 H1G H A
€pal” = €ba€*Ye = Yp. (6.151)
THERR T YA 5 AE Lorentz 54 SR FLN 1Z02 GXHLN T E THEVRHY R (M)
U RL(M) ¢ = epaRL (M) = R(M) Mg (FIEIRIEIRIERINT A (6.152)
it 2
€ epaRL(M)“y¢ = € RL(M)a,
RL(M)y¢ = € R (M) €, (6.153)
RL(M)*, = €PRL(M) eqe.
Wti2. FTLARMIA Levi-civita £F5 %8 _EHSPREEIR A AR A6 Mo I LIS IFAITHREFE bR Y
PEpoE BIE Y.
1T Right-handed spinor rep, 18,4 Lorentz /455K & Levi-civita 5K & o
eis=-1, 6i=1,e2=1 & =-1. (6.154)
¥avriy 1 s N T # Left-handed representation [X 73 Jf. Z5{LLT Left-hand rep 1A {F T, Right-
hand {5 ¢ s AT AT R R o

Conjugate of Left-spinor Levi-Civita £7-5- 1] LU Conjugate of Left-spinor 5 {5 &1« B IG
7E X Left-spinor,

U
.= (6.155)
s lt)

‘© 1Y Conjugate F4EFEZETR

' = (w}:«//;) . (6.156)
H Levi-Civita 755 [ $g8h5
Ul = ey’ = (—w;) . (6.157)
/8

NHVGXFEE L HIFAL, 2 Bl E LAY Conjugation of Left-spinor £x#% i Right-spinor rep 4%
o Fa 2 1 Conjugation Y& S

Yo = ooyt = (0 _i) (‘/'1) =i (_‘”}) . (6.158)
i 0)\y; 8

IR 7 THBE PR FL4% & LAY 2% 18 Hermitian Conjugate ST il U8 vl #Sess 8
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F Spinor 224t
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